
Smart Reminder -
Personal Assistance in a Mobile Computing Environment

Frank Kargl, Bin Dong, Torsten Illmann, Michael Weber
Department of Multimedia Computing

University of Ulm
89069 Ulm
Germany

+49 731 5031310
{frank.kargl|bin.dong|torsten.illmann|michael.weber}@informatik.uni-ulm.de

ABSTRACT
In this paper, we describe the Smart Reminder agent that we
developed using our CIA personal agent framework. We
first motivate the need for personal assistance and how this
need led us to the development of the CIA agent framework.
Smart Reminder is composed of a set of personal agents
that support their user in all situations where people come
together spontaneously, e.g. an encounter on a corridor.
Smart Reminder will notice the presence of another person
and display identity information like name, affiliation, etc. In
cooperation with other CIA agents it will also display
information related to that person like common dates and
tasks. After the introduction of this scenario and a
description of the functional range of Smart Reminder we
continue our paper with some technical aspects of the
application like person detection and communication via
Bluetooth. We conclude our paper by giving an outlook
how Smart Reminder can be extended in the future.

Keywords

Personal assistance, personal agents, CIA framework, Smart
Reminder

INTRODUCTION
Personal Assistance
In today’s rapidly changing world, people spend more and
more time with the coordination of information. In spite of
the large amount of technical tools available, like phone, fax,
email or the WWW, there are research studies showing that
for many people this overload of information and
communication activities is simply too much [1]. In contrast
to the introduction of ever new technology, productivity of
professionals sometimes even diminishes. So today’s
computers often fail to deliver their promise of being helpful
productivity tools.

Personal Agents
Personal Agent Technology [2] offers a promising way out
of this dilemma. Although the definition of what actually
makes out a software agent varies between different fields
of computer science, there is probably one common aspect:

“Software agent: A computing entity that performs user
delegated tasks autonomo usly.”[2]

So like a good secretary they should allow their users to
delegate routine tasks and get them finished without any
further user intervention.

Collaboration and Coordination Infrastructure for
Personal Agents (CIA)
Many agents today concentrate on a single task where
assistance should be provided. So even when a user is
assisted by a number of different personal agents, it is still
up to him to coordinate these different agents. Think of a
travel scenario, where a user needs to coordinate different
tasks like selecting appropriate transport means like train or
plane, booking a hotel room and arranging dates with
business partners he wants to meet at the foreign location.
Even if there are agents supporting any of these single
tasks, it is still up to the user to ensure that the plane will
arrive at the destination in time for the meeting or that there
is enough time to get from the train station to the airport etc.

If we succeed in making the single agents cooperate, the
benefits are clear: the user can simply tell his cluster of
personal agents to make a date with some other persons
and arrange a suitable accommodation and transport.

Example Scenario
Think of organizing a meeting in your company. Instead of
sending a dozen mails back and forth or phoning all the
participants a number of times to fix a date and reserve a
suitable meeting room, you just tell your personal diary
agent to do all this for you. All you have to do is to specify
who should join the meeting, a timeframe when the meeting
should happen and if a meeting room is required and which
properties (e.g. a beamer) this room should have. The rest is
up to the personal agents of the participants. After a few

minutes you will get a notification with the exact date and
room.

The CIA Framework
In order to allow such scenarios the different software
agents need to cooperate in a complex way. First the agents
responsible of date organization (which we call Diary
Agents) have to agree on a concrete date for the meeting.
Afterwards the Diary Agents have to send a request to
another agent responsible for room reservation. This Room
Reservation Agent will then contact a room reservation
service responsible for the building where the meeting is to
happen and reserve a suitable room.

It is reasonable to encapsulate most of the basic
functionality in a middleware component that relieves the
agent programmer from dealing with details of the
underlying communication system, database engine or
application server.

It is the aim of the CIA project [3] to realize such a
framework for personal agents that provides:

• Easy implementation and integration of software
agents.

• Powerful but still easy-to-use communication features.

• Easy and location transparent access to agents of other
users and to external services.

• Integrated support for commonly needed features like
persistency, security or weak and strong mobility.

• Support for flexible and device independent user
interaction [5].

All personal agents belonging to one person are
concentrated in a virtual construct called Agent Cluster [6]
that can be spread out over a multitude of different physical
devices that are inter-connected by a communication
network. Each user owns exactly one Agent Cluster that will
support him every time and everywhere. The
communication infrastructure may vary widely in availability
and quality of service, as all communication is based on
asynchronous message exchange. Within the cluster
communication is possible via the so called Agent Bus
which consists of several topic-based communication
channels [4]. External functionality that is not related to a
user is offered by so called Services. The location of
suitable services or of clusters of other persons is done by
a directory, broker and trader component (DBT). Figure 1
represents an overview of the CIA architecture with two
agent clusters, two services and the lookup component.

CIA is based on a number of technologies that largely
influence its capabilities:

• Message Oriented Middleware: this provides location-
transparent, asynchronous communication channels.
Addressing of messages is not done directly but instead
semantic topics are used to deliver messages to all
interested participants [4]. Agents can subscribe to
channels. Whenever a message is posted to a channel, it

is delivered to all subscribers. We support different MOM
implementations using a factory pattern, ranging from a
simple local dispatcher that runs on very small devices
within a Java VM to multicast-based message delivery in
arbitrary IP networks. A segment of an Agent Cluster
running a specific AgentBus implementation is called a
subcluster. Different subclusters are bridged by Cluster
Routing Agents (CRA) which implements advanced store-
and-forward capabilities like expiration, prioritization, etc.
These mechanisms cover short network outages or
overload of lines with small bandwidth. The messages can
contain any kind of data like serialized objects or FIPA
ACL messages [28].

• Mobile Ad-Hoc Networking: The topology between the
components of an Agent Cluster is not fix. So advanced
topology discovery and routing for mobile radio netwo rks
is integrated [7][8].

• Discovery Service: We use Sun’s Jini [9] for easy
location of Agent Clusters and services. This is
augmented by broker and trader services that e.g. find a
suitable room reservation service for a given building.

• Services: Most services in the CIA framework are
realized as Java Enterprise Beans [10] that are embedded
in J2EE application servers. Nevertheless, the framework
is open to easily integrate services of different
technologies like Web Services, RMI or CORBA.

• Device Independent User Interaction: In [5] we present
the concept of the User Communication Agent (UCA)
which is responsible for all interaction between agents
and users. Agents don’t implement their user interface
themselves but instead merely present an abstract
description to the UCA. Users can freely connect or
disconnect to the UCA with whatever device they are
presently using. It is the responsibility of the UCA to
generate a user interface fitting the device in use and to
relay events between the agent and the user. This way
only a small subset or even none of the agents in use
needs to run on the user’s current device.

This flexible framework allows the easy implementation of
complex cooperation scenarios that are distributed, mobile
and multi-user capable. In order to demonstrate this, we
developed the Smart Reminder Agent.

The Smart Reminder Agent

Introduction
All of us usually have social connections to a lot of other
people. We have dates with others, common interests, work
together in projects etc. Sometimes these social
connections simply become too many. Often when
encountering a person in a crowded area, we can’t
rememb er the name although we are sure to know this
person. Or we meet someone, talk to him and five minutes
after we left him we suddenly remember that we should have
discussed with him a very important matter. This is where
the Smart Reminder helps and supports.

Figure 2: Smart Reminder Display

The Smart Reminder is a personal agent in the CIA
framework which offers a reminder service based on the
current context of its user. As you can see in figure 2 the
Smart Reminder Agent (SRA) displays information on the
identity of another person. Additionally the SRA is able to
gather related data from other agents in the own or a remote
Agent Cluster. E.g. the SRA can search the diary agent for
dates or the task agent for tasks related to that person.

Example Scenario
Whenever a user Alice meets another SRA user Bob e.g. on
a corridor (see figure 3) or in an office the two SRAs
involved will detect this encounter and exchange identity

information (name, affiliation …). This information is then
presented to Alice and Bob e.g. via a head-mounted display
or as speech output using a small headset.

In a next step, Alice’s SRA agent contacts her other
personal agents searching for dates and tasks related to
Bob. That way Alice has all the relevant information
regarding the person met immediately available. She will be
informed about upcoming dates like a planned lunch with
Bob next day and may then ask him if this date is still valid.
By displaying tasks related to the encountered person she
will never forget to ask Bob important things like the status
of the development progress of a joint project or socially
relevant things like: “How is Your family?”.

Figure 3: Spontaneous Meeting

Workflow

Service

Room-Reservation

Service

Figure 2: CIA architecture Agent Bus

CCA MLA POS CSA Video

MCA

Text

MCA

Text

MCA FA

CDA

UCA

User A

SMA

Agent

Room-Reservation

Agent

. . . CPA

MPA

CBA

 Agent Bus

CCA MLA CSA CBA SMA

Agent
agent subcluster 2

agent subcluster 1

Agent Bus

CCA MLA POS CSA Video

MCA

Text

MCA

Text

MCA FA

CDA

UCA

User B

SMA

Agent

Room-Reservation

Agent

. . . CPA

MPA

CBA

 Agent Bus

CCA MLA CSA CBA SMA

Agent
agent subcluster 2

agent subcluster 1

Agent Layer
Layer

Directory, Broker,
Trading-Service
Layer

Service Layer

Figure 1: CIA Architecture

DBT DBT
Update

Participating Agents
As said before, the different functions that overall form the
Smart Reminder are distributed to several agents. The Smart
Reminder Agent (SRA) instructs the Bluetooth Proxy Agent
(BPA) to constantly inquire the neighborhood for new
nodes. Whenever such a new node appears, the BPA sends
a DISCOVERED event to a communication channel where it
is received by the SRA. The SRA then sends his cluster ID
to the remote SRA. All communication between the clusters
is relayed via the BPA. Next both SRAs contact their
VirtualMeAgents (VMAs) which administrates the identity
information of the cluster owner and preferences like work
hours, preferred lunch time , which information to transmit to
other SRAs etc. Up to the time of writing this information
has to be entered by the user. In the future we intend to
extend the VMA to learn this from the behavior of the user.
Based on the ID of the remote cluster the VMA also decides
what information is to be delivered. This allows to
distinguish e.g. between members of a related company,
friends from a sport club and completely unrelated persons.
Whereas people from a partner company will get e.g. by
business phone number, I might decide not to give it to
completely unrelated persons. Furthermore the VMA
calculates a so called busy-level.

The VMA queries the Task and Diary Agent for upcoming
tasks and dates. Depending on deadlines and duration the
VMA can estimate how busy the user currently is. The SRA
can then present this information e.g. to a colleague who
can in turn decide not to disturb the user with unimportant
things if he is extremely busy.

The level of busyness is computed as follows:

Let

 now = the current time

 T = (t1...tn) a list of tasks to be done from now

 ordered by deadline

 Anow = set of all appointments ending after now

 wtnow = set of all working hours ending after now

The available worktime from now till the end of task tj is:

 ∑∑
≤∈=

−∈=
deadlinetendaAa

deadlinet

nowh

nowjavail

jnow

j

durationawthhwt
..|

.

, .|

The busy-level b j considering tasks t1 to tj is:

javail

k

j
wt

t
b

j

k

,

1
∑

= =

The resulting overall busy-level b is the highest busy-level:

)(max
1

j
nj

bb
≤≤

=

Whenever a cluster receives information from a remote
cluster, this information is automatically sent to the
Address Book Agent (ABA) which stores it for further
reference.

As soon as the identity information is exchanged, the SRA
displays this information to the user. The SRA uses the
User Communication Agent (UCA) for this task. All user
interaction in CIA is handled by the UCA. The agents only
describe their “user-interaction-interface” to the UCA.
Whenever a user connects to the UCA (using e.g. a web-
browser or a telephone-interface) the UCA renders this
description e.g. to a graphical user interface or generates a
speech dialogue. Input, events etc. are delivered back to the
agent. Using this mechanism, the system can adapt to
different input/output devices.

In order to display more useful information, the UCA sends
a request to an Agent Bus channel asking all the subscribed
agents to deliver information regarding the met person. So
e.g. the diary agent will send dates and the task agent tasks
that are related to that person. Again this is displayed to the
user.

Implementation Details

Programming Language
All components of the CIA framework and the personal
agents are written in Java [11] ensuring easy portability to a
large range of devic es.

Communication Infrastructure
The Smart Reminder Agent needs to recognize an encounter
with another person. There are several possibilities to
achieve this. One of the options is using RFID tags [12] and
corresponding RFID readers. This allows the detection of
other persons but we then need a separate communication
channel for inter-cluster communication.

We could also use IEEE 802.11 Wireless LANs [13] in ad-
hoc mode to detect neighbors. But as the range of these
radios is quite large (up to a few hundred meters in open
space), we will probably detect too many persons e.g. inside
other buildings. A combination of RFID encounter
detection and WLAN communication could solve all the
problems but has the disadvantage of needing separate
devices.

For this reason we decided to use Bluetooth for both
encounter detection and communication. As Bluetooth
Class 3 has a limited range of up to 10 meters, this fits pretty
well with our requirements. However, Bluetooth has also
one disadvantage: the inquiry process may take up to 10
seconds to detect a new device so our prototype sometimes
reacts a little bit slow on new encounters. On the average,
new devices are discovered after 5 seconds which is
tolerable. After a new device has been discovered, the
Bluetooth Proxy Agent establishes a connection to the
other device which is then used to transmit all data. The
theoretical data transmission rate is 1 Mbps so even with
the overhead introduced by the communication protocols

there is still enough bandwidth for the Smart Reminder
application.

Hardware and Bluetooth Stack
We are using Acer USB Bluetooth Dongles with Bluecore
Chip from Cambridge Silicon Radio [14]. As all Bluetooth
hardware has a well standardized Host-Controller Interface
(HCI) it is pretty easy to integrate different Bluetooth
devices. On the host side, we need a so called Bluetooth
stack which handles the different communication profiles
like RFCOMM for serial line emulation or PAN for personal
area networks. As most of our implementation is done on
the Linux operating system, we tested different Linux
Bluetooth stacks for their suitability. After testing the
OpenBT [15], the BlueZ [16] and the Affix [17] stack we
finally chose Affix because it showed the best stability of
the candidates.

Up to now no standardized Bluetooth API for Java is
available (although a standardization effort has just
produced a final proposition [18]), so we use a self-written
native JNI adaptor to access stack functions from the
Bluetooth Proxy Agent. As Bluetooth support becomes
integrated in the standard Java APIs, we will omit this
Linux-dependant component from our application.

Other Hardware
Our demonstration prototype uses Linux (SuSE 8.0) on
MA V wearable PCs from Xybernaut. We also have a
number of different I/O devices available, like wearable flat-
panel displays, a number of head-mounted displays,
wearable keyboards etc. Using this equipment we are at the
beginning of testing and improving the usefulness of the
Smart Reminder using different set ups in user trials .
Important questions being investigated include:

• How do users in a wearable scenario interact with their
Agent Cluster?

• What impact have the properties of the communication
infrastructure (e.g. Bluetooth inquiry time) for the
application?

• How could the Smart Reminder be extended to support
more than two persons in an encounter?

Related Work
Projects in the area of personal assistance may be divided in
three major categories:

• Context -aware information gathering

• Optimization and filtering of messages

• Delegation of personal tasks

Context -aware systems mainly assist by considering time-
[19] [20], location- [21] [22], activity- and/or persons-
dependent situations. Reminder agents like this work may
be counted to context -aware systems.

When looking at projects using a reminder functionality, the
work of the agent group at the MIT Media Lab attracts
attention. They produced a number of different reminder

agents, like Streetwise, which provides location-dependent
information to its user [22].

Another relevant project of the MIT Media Lab is called
Memory Glasses [23] which is a wearable computer-based
context -aware reminder system. It uses time, location, and
activity context to deliver reminders to its user. The
projects’ main focus is on personal context by using body-
worn sensors to determine what the user is currently doing
(e.g. walking down stairs or taking part in a conversation).
Memory Glasses then presents reminders associated with
that activity using audio output. The main idea is that the
context information lets Memory Glasses determine when it
is appropriate to interrupt the user with a reminder.

Other similar projects include Lifestreams [24], comMotion
[25] or Proem [26].

The CybreMinder [27] of Georgia Tech uses a so called
Context Toolkit to deliver reminders to a user based on time-
, location- and co-location context.

Whereas all of these systems consist of a single component
that stores, transmits and delivers reminders, our system
uses the cooperation of a large number of agents working
together to deliver aggregated information to the user.
Moreover, it combines context -aware assistance with the
possibility of delegating personal tasks in one system.

Summary and Future Development
It is our strong believe that personal assistance systems will
become more and more ubiquitous in the future. The key-
point is that these systems must work as autonomous as
possible so that the time and effort saved by these systems
is not consumed by additional time and effort in
coordinating these different services. So the CIA system
tries to establish a framework where different autonomous
agents can easily work together to deliver aggregated
benefits to their users. The Smart Reminder is a
demonstration that shows how the interoperation of
different agents focused on single tasks can realize complex
applications.

In the future we plan to extend CIA and the Smart-Reminder
in two major directions:

First we are currently changing the communication
framework in order to use messages based on FIPA [28] and
DAML/OIL [29] in order to allow the agents to better
interpret the content of messages [30]. This will allow the
Smart-Reminder to send a generic request to all agents in
the cluster asking for information about a met person and
display it to the user.

Another future research direction will be on the integration
of speech recognition. The Smart -Reminder agent will
overhear normal conversation between persons. If e.g. one
person tells another person “Let’s meet for lunch
tomorrow” the Smart-Reminder can instruct the diary agent
of the Agent Cluster to arrange a date tomorrow noon with
the other person. The CIA framework will assist the speech

recognition engine by providing the context of the talk (e.g.
names of persons, location etc.)

ACKNOWLEDGMENTS
We thank the Xybernaut corporation for providing us some
of the necessary hardware to implement our prototype and
esp. Torsten Bergander from Visions2Wear for his
assistance in the creation of the SmartReminder.

REFERENCES
1. SBT Accounting Systems: The PC Futz Factor, 1993.

2. Caglyan, Harrison. The Agent Sourcebook. Wiley &
Sons. 1997.

3. F. Kargl, T. Illmann, M. Weber. CIA - A Collaboration
and Coordination Infrastructure for Personal Agents.
Proceedings of the IFIP TC6 WG6.1 Second
International Working Conference on Distributed
Applications and Interoperable Systems DAIS'99.
Helsinki, Finland. 1999 .

4. F. Kargl, T. Illmann, M. Weber. Evaluation of Java
Messaging Middleware as a Platform for Software Agent
Communication. Java Informationstage JIT'99.
Düsseldorf, Germany. 1999.

5. F. Kargl, T. Illmann, M. Weber, S. Ribhegge. Dynamic
User Interfaces with Java. Proceedings of Webnet'99.
Honolulu, USA. 1999.

6. T. Illmann, F. Kargl, M. Weber. Design of an Agent
Cluster as Integrative Environment of Personal Agents .
Proceedings of ICIIS'99. Washington, USA. 1999.

7. C. Perkins (ed.). Ad hoc networking. Addison Wesley.
2001.

8. C.-K. Toh. Ad hoc mobile wireless networks: protocols
and systems. Prentice Hall PTR. 2002.

9. Jini. http://java.sun.com/products/jini/.

10. Java 2 Enterprise Edition. http://java.sun.com/j2ee/.

11. Java. http://java.sun.com/.

12. K. Finkenzeller. RFID Handbook: Radio-Frequency
Identification Fundamentals and Applications. Wiley &
Sons. 2000.

13. IEEE 802.11.
http://standards.ieee.org/wireless/overview.html#802.11.

14. Cambridge Silicon Radio. BlueCore 2-External Product
Data Sheet.
http://www.csr.com/media/pdf/bc02-external.pdf.

15. Axis OpenBT Stack.
http://sf.net/projects/openbt/.

16. BlueZ Stack. http://bluez.sourceforge.net/.

17. Affix Stack. http://affix.sourceforge.net/.

18. Java Specification Request 82: JavaTM APIs for
Bluetooth. http://jcp.org/jsr/detail/082.jsp.

19. E. Chang, P. Maes: Hanging Messages: Using Context -
Enhanced Messages for Just-In-Time Communication,
May 2001.

20. B. Rhodes and P. Maes: Just-in-time information retrieval
agents, IBM Systems Journal special issue on the MIT
Media Laboratory, Vol 39, Nos. 3 and 4, 2000 pp. 685-
704.

21. P. Persson, F. Espinoza, C. Elenor, GeoNotes: Social
Enhancement of Physical Space, Design-Expo at
CHI'2001, Seattle, April 2001.

22. J. Youll, J. Morris, R. C. Krikorian, P. Maes. Impulse:
Location-based Agent Assistance, Software Demos,
Proceedings of the Fourth International Conference on
Autonomous Agents (Agents 2000), Barcelona,
Catalonia, Spain, June 3 - June 7, 2000.

23. R.W. DeVaul, B. Clarkson, A. Pentland, The Memory
Glasses: Towards a Wearable Context Aware, Situation-
appropriate Reminder System. CHI 2000 Workshop on
Situated Interaction in Ubiquitous Computing. 2000.

24. S. Fertig, E. Freeman, D. Gelernter. “Finding and
Reminding” Reconsidered. SIGCHI Bulletin. Vol. 28. 1996

25. N. Marmasse. comMotion. Extended abstract in
Proceedings of CHI’99. 1999. pp 320–321.

26. G. Korteum, Z. Segall, T.G.C. Thompson. Close
Encounters: Supporting Mobile Collaboration through
Interchange of User Profiles. Proceedings of HUC’99.
1999. pp 171–185.

27. D. Anind, A. Gregory. CybreMinder: A context -aware
system for supporting reminders. In Proceedings of
Second International Symposium on Handheld and
Ubiquitous Computing, HUC 2000. pp 172-186.

28. Foundation for Intelligent Physical Agents. FIPA
Communicative Act Library Specification, Version H,
http://www.fipa.org/specs/fipa00037/.

29. J. Hendler and D. McGuinness. The DARPA Agent’s
Markup Language. IEEE Intelligent Systems, 15(5):34-43.
May 2000.

30. M. Schalk, T. Liebig, T. Illmann, F. Kargl. Combining
FIPA ACL With DAML+OIL – A Case Study.
Proceedings of the 2nd International Workshop on
Ontolgies in Agent Systems, Bologna, Italy, July 2002.

