Table of Contents

JIT 99

Evaluation of Java Messaging Middleware as a Platform for Software Agent
CommUNICAtION ..« .ottt e e e
Frank Kargl, Torsten Illmann, Michael Weber



II



Evaluation of Java Messaging Middleware as a
Platform for Software Agent Communication

Frank Kargl, Torsten Illmann, and Michael Weber

Distributed Systems Department, University of Ulm, 89081 Ulm, Germany
frank.kargl@informatik.uni-ulm.de
torsten.illmann@informatik.uni-ulm.de
weberQinformatik.uni-ulm.de
WWW home page: http://wuw-vs.informatik.uni-ulm.de/

Abstract. In this document we introduce an infrastructure for personal
agent communication and coordination. An essential part is the so called
AgentBus, built on top of existing messaging systems that allows flexible
communication between agents. We show how messaging differs from
other communication mechanisms and describe our evaluation of several
Java messaging systems like JMS, Corba Event and Notification Service
or Softwired’s iBus with respect to functionality and performance. We
also describe the special requirements of agent communication and the
design and performance of our AgentBus.

1 Introduction: The CIA Project

Our research group is currently studying different aspects of software agent sys-
tems in a project called CIA [1]. We are developing an infrastructure where
software agents can easily be integrated. Java 2 is the platform for all our proto-
type implementations. In this project all agents belonging to one user form a so
called AgentCluster. This cluster supports the agents with all kinds of commonly
needed services. For all communication agents use the so called AgentBus that
is implemented on top of an exchangeable messaging system. Therefore we have
evaluated and tested different Java messaging systems.

2 Agent Communication

When we talk about agent communication, we find a lot of diverse communica-
tion patterns. Agents communicate with their users, with other agents (belong-
ing to the own or another user), with services found at various places etc. We
will first give an overview over different communication models in general and
messaging in particular.

2.1 Messaging Oriented Middleware

”Traditional networking systems” like many Internet services (e.g. WWW) are
build upon the client-server paradigm. A dedicated server offers services under



a specific address. A client uses these services typically by sending a request
to the server and yielding an appropriate response. These systems use a more
or less direct addressing scheme. Peers or servers are contacted either by their
address (e.g. 134.60.240.13) or by a indirect addressing using statically bound
names (e.g. www.uni-ulm.de). Application specific protocols (e.g. http) are used
for communication. Resolution mechanisms like portmappers or more dynamic
name-servers (e.g. CORBA name-service) don’t change the direct connection
between the peers or the client and the server.

Sometimes it is desirable to decouple this strict relationship. Especially in
an object-oriented environment with dynamic communication patterns, you can
use so called Message Oriented Middleware (MOM). Typical applications that
use MOM are characterized as follows [2]:

— Multiple client applications may be interested in the same object-initiated
information.

— It is better to make the data objects actively share their information because
clients may come and go dynamically.

— The objects can not afford to suspend execution while a given message is
being transmitted to each interested party.

These messaging systems are peer-to-peer facilities where clients can send
messages to and receive messages from any client. Clients connect to messaging
agents that support creation, sending and reception of messages. Each system
provides a way of addressing messages. When using MOM there are typically
two messaging styles offered [3]:

— Point-to-Point (PTP) systems use message queues that are associated with
specific clients. Messages are addressed to queues. Clients extract messages
from their queues.

— In a Publish/Subscribe (Pub/Sub) system clients take the role of either Pub-
lishers (Producers) or Subscribers (Consumers). Publishers send their mes-
sages to some named entity (e.g. a channel) from which clients can extract
them. Most systems are capable of broadcasting or multicasting a message
to many destinations at once (see Figure 1).

If messages are delivered asynchronously to clients as they arrive, we speak of
push communication. If a client must (synchronously) request each message, it is
called pull communication. Sometimes an immediate response to a message sent
by one client is expected. Some messaging systems implement this as a so called
synchronous request-reply communication which is similar to the communication
mechanisms in traditional client server systems while still preserving the other
advantages of a messaging system (no direct addressing etc.)

2.2 Requirements for Agent Communication

We have identified various aspects of agent communication that suggest the usage
a messaging system as a base for a software agent communication infrastructure.
We use these criteria as guidelines in our evaluation of different products:



Publisher Publisher

N —

-'.—:—Z.Channel i | /

'\\ji«\i“/ '\\/‘

Subscriber Subscriber

Fig. 1. Publish/Subscribe Model

— Location transparency. The composition of agents at one place may vary
frequently. Mobile agents may come or go and certain agents may be started
or shutdown by their user. Thus a mediating middleware is preferable above
direct addressing.

— Topic addressing. An agent can not know which other agents are interested
in the information the agent wants to make public or which other agents can
respond to its request. Thus an addressing style based on topically named
communication channels and not on single agents is preferable.

— Message filtering. Furthermore not all agents want to interprete all mes-
sages. So some kind of filtering mechanism should be realized directly within
the messaging system.

— Persistent messages. Mobile agents or agents hosted on mobile systems
like notebooks or PDAs may not always have a direct connection to the mes-
saging system. Thus some kind of disconnected operation mode is needed
where important messages are stored in a persistent manner within the mes-
saging system and are delivered to the agents whenever they reconnect.

— Quality-of-Service. Not all messages have the same importance and there-
for different qualities of service need to be implemented. Some messages e.g.
may need high throughput but only few reliability whereas others have to
be delivered with an exactly-once semantic.

— Timing constraints. Often an information has a certain lifetime. It is only
valid after some initial date and no longer than it’s expiration date. Such
and similar timing constraints should be respected by the messaging system.

— Secure communication. Agents often deal with sensitive information about
their user (like credit card numbers etc.). Secure and confidential commu-
nication should be implemented directly within the agent communication
infrastructure.

— Distributed architecture. For reasons of scalability and resilience, the
messaging system should work without any central components, like message
dispatchers or naming services.or at least these components should work
redundantly.



— Portability As we want to use different platforms for our system, ranging
from PDAs to PCs and workstations, the messaging system must be platform
independent or easily portable.

Because of the last item and various other reasons a first decision was to
use Java for our implementation prototypes. Next we have evaluated and tested
common messaging systems for Java.

3 Messaging Systems for Java

3.1 Java Message Service

Sun has specified a special Messaging API called Java Message Service (JMS).
The current version is 1.0.1 [3] . Sun plans to use JMS as the standard mechanism
for asynchronous bean invocation with EJB. JMS provides a common way for
Java programs to create, send, receive and read messages from various messaging
systems. JMS therefore defines a common set of enterprise messaging concepts
and facilities. These concepts are implemented by a specified messaging product
and may be accessed using so called JMS Providers. Often these are written
in 100% pure java and applications using JMS are thus portable among a wide
range of platforms.

JMS has two messaging domains: the PTP and the Pub/Sub domain. JMS-
compliant applications can only be ported directly across different JMS providers
within their communication domain. Messages are produced by a MessagePro-
ducer and consumed by MessageConsumers. A JMS messages consist of a header
and a body part. The header contains administrative information (Destination of
message etc.) as well as simple QoS requirements (expiration dates, priority etc.).
In addition to predefined header fields messages may contain user defined prop-
erties. Using Message Selectors, which are some kind of search expressions based
on these properties, users can identify to the system what messages exactly they
are interested in. The Body of a JMS message may be of type StreamMessage,
MapMessage, TextMessage, ObjectMessage or ByteMessage, containing either
a stream of Java primitive values, an associative map of name/value pairs, a
java.lang.String, any serializable Java object or a stream of uninterpreted
bytes. Many vendors have announced or already implemented JMS support for
their messaging systems. We have evaluated one JMS implementation called
FioranoEMS 3.1 [8].

Requirements: In respect to the requirements from the last chapter, JMS
delivers topic based addressing, but no further filtering capabilities. Quality-of-
Service and Security are not within the scope of the JMS API but JMS providers
may implement their own proprietary extensions. JMS supports so called persis-
tent messages with expiration dates and a transaction concept. As they are pure
java JMS providers available, portability is good. Although JMS is only a spec-
ification and many different implementations are possible, many JMS providers
(like Fiorano) use central components as dispatchers. Redundancy is possible
nevertheless.



Event Supplying Event Consuming
Applications Applications

PushSupplier ProxyPushConsumer ProxyPhshSuppIier PushConsumer

- . J Event T J

Channel

i — | s —
upplier ProxyPullConsumer ProxyPullSupplier PullCons

Fig. 2. CORBA Event Channel

3.2 CORBA Messaging

The basic CORBA mechanism provides for synchronous execution of opera-
tions within remote objects (or remote method invocation). CORBA uses di-
rect addressing via object references and is no messaging system in the sense
used above. Nevertheless the OMG [4] has specified two additional services for
CORBA that implement messaging systems: the CORBA Event Service [6]
and the CORBA Notification Service [5].

CORBA allows a special kind of communication called event-style. When
using event-style communication in push style, event-supplying applications send
events to event-consumers by invoking a push operation on the latter, passing
the event as an operation parameter. Pull style communication is similar, except
for the consuming application invokes a pull operation on the supplier, which
will return an event if one is available.

Although the mechanism described above provides basic support for event-
style communication it does not support decoupled, asynchronous, multicast
communication. However it is used to define an intermediary agent known as
the Event Channel that satisfies these requirements (see Figure 2). An Event
Channel is a standard CORBA object; communication with the Event Channel
takes place using standard CORBA requests. It supplies platform and language
independent, mixed push/pull, many-to-many communication within CORBA.
In most implementations the Event Channel is implemented as a central dis-
patcher object, so scalability problems are likely to occur.

The CORBA Event Service suffers from some deficiencies [2]:

— It has no filtering capabilities. This may lead to heavy load or congestion as
every consumer connected to a given channel receives a copy of every event
delivered to the channel.

— Clients may want to specify their different quality of service requirements
like fast, best-effort versus slower, guaranteed delivery.

So the OMG issued a Request for Proposal for an enhanced successor to the
Event Service. The result is called CORBA Notification Service and is back-



ward compatible with the original Event Service. It has two major improvements
to overcome the named deficiencies:

— Clients can associate a set of filters with proxy objects. The proxy object
will forward only those events that match at least one of the constraints
associated with at least one of its filters.

— Clients can define quality of service requirements on a per event, a per proxy
or a per channel base.

Quality of Service parameters that can be specified include reliability, prior-
ity, time constraints and user defined properties. Additional features of the Noti-
fication Service enhance its scalability, performance and usability. E.g. channels
may inform event suppliers about the types of event in which consumers have
interest in receiving and vice versa channels can inform consumers about types
of events that suppliers intent to emit. In addition, the service defines special
transactional proxies for transactional event transmission and a repository for
the definition of application specific event types.

Requirements: The Event/Notification Service fulfills most of our require-
ments for agent communication. Topic based addressing can be realized using
one channel object per topic. Filtering and Quality-of-Service were added with
the Notification Service. Security may be realized by using IIOP via SSL con-
nections. As CORBA is one of the leading industry standards many implemen-
tations (incl. pure Java solutions) are available. Event/Notification Services are
often implemented as single dispatcher objects which has negative impact on
scalability and resilience.

3.3 Softwired’s iBus

iBus (current version 2.0.1) by Softwired Inc. [7] is a 100% pure Java messaging
system. It provides publish/subscribe style of communication transmitting any
kind of serializable Java objects. Events are sent either using TP multicast (many-
to-many communication) or TCP PTP connections. In normal operation iBus
provides asynchronous push of events using different channels named by URIs.
There is also a fault tolerant multicast request/reply mechanism that allows
synchronous request/reply communication. A request by one client is delivered
to all potential repliers. After return the client gets an array of all responses
supplied.

iBus has a flexible Quality of Service framework with an extensible proto-
col stack, allowing each application to tailor the QoS exactly to their needs.
Applications can even supply their own stack modules implementing new and
unexpected QoS characteristics. Applications may e.g. decide what kind of ac-
knowledge mechanism they want to use (positive, negative, none at all), they can
include a crypt stack module for online encryption of all iBus traffic or they can
replace the IP multicast module with an ATM multicast module. iBus has no
central components (like a naming service) and there is no central performance
bottleneck. Clients can join or leave channels anytime and at any place within



an IP multicast Intra-/Internet enabling what Softwired calls spontaneous net-
working.

Requirements: Most of our requirements are addressed with iBus. Topic
based addressing is done using named channels. Flexible Quality of Service re-
quirements are handled by the dynamic stack framework, although some aspects
like timing constraints or security aspects aren’t handled by the provided stack
modules. Message persistence is announced as a separate product. As iBus is a
pure java solution, portability is good.

4 CIA AgentBus

The CIA AgentBus is the central (and only) communication mechanism in our
agent infrastructure. It may reside on top of any of the above messaging systems.
It consists of several agent channels that provide a topic based information
exchange between clients. Agents, channels and the whole AgentBus are named
using a URL-like notation. An example may be:
cia:<qos>://frank.kargl@de:<pid>/dates/business/diary-agent

You can specify optional QoS parameters, your name, country and the op-
tional personal id to identify your personal Agent Cluster. /dates/business
denotes the name of a channel for exchanging date information. Finally diary-
agent is the name of a specific agent communicating via this channel.

The primary design principal was to keep usage of the AgentBus by agent
programmers as easy as possible. Agent programmers should focus on writing
good agents and not on dealing with complex communication systems. For com-
munication agents simply establish new AgentChannels or join existing ones by
creating a new AgentChannel object with a specified AgentURL. The AgentBus
knows three communication mechanisms:

— Asynchronous ChannelEvents that are directed to a channel and are seen by
all consumers on this channel.

— Asynchronous ChannelMessages that are addressed to a specific agent on a
channel and that are delivered only to this agent.

— Synchronous multicast request/reply. A client sends his request to a channel
where a number of repliers may process it. Each replier may return a result.
All supplied results are delivered to the client as an array.

Any of these mechanisms may be used in parallel within the same channel.
The following code example illustrates how easy channels are created /joined and
events are sent:

// create new AgentBusFactory using ibus implementation
AgentBusFactory myABF = new AgentBusFactory("ibus");
// create new AgentURL
AgentURL myAURL =

new AgentURL("cia://frank.kargl@de/dates/business/diary-agent");
// create new Channel



AgentChannel myAC = myABF.newChannel (myAURL) ;

// create new Message

ChannelEvent myCE = new ChannelEvent("Test Message");
// send event

myAC. sendEvent (myCE) ;

Reception of events works via event handlers. Messages and Requests/Replies
are used analogous. There’s also a mechanism for event persistence. A special
agent associated with each channel records all events for a specified lifetime and
may retransmit them to any agents that join this channel at a later point in
time. Encryption, reliability etc. may be encoded in the QoS specification in the
AgentURL.

After comparing the different messaging systems described above we decided
to use iBus as a first platform for implementing the AgentChannel. In fact the
AgentBus design is partly influenced by the iBus architecture. We think iBus is a
very lean and portable (100% java) concept with good built-in capabilities. More
importantly we are able to integrate own features like new security mechanisms
or new communication patterns using custom stack modules. As we don’t want
to depend on a single messaging system the AgentBus totally wraps all specific
aspects of iBus. There is a factory for creating new AgentBus object instances
that can work with any other implementation. We plan to implement at least
three other alternatives for comparison: one based on the CORBA Notification
Service, one JMS based solution and a completely independent implementation
of a messaging system based on an ATM network that allows advanced QoS
applications like video conferencing.

5 Performance Comparison

This chapter provides results of performance measurements with implementa-
tions of a Corba Event Channel (Visibroker for Java 3.4), iBus 2.0.1, JMS (Fio-
rano EMS 3.1) and our AgentBus. We have not tested a Corba Notification
Service for availability reasons. Our AgentBus is included into the tests because
we want to measure the produced overhead compared to the iBus implementa-
tion. Since iBus allows to specify different QOS functionality, it is tested in a
reliable and an unreliable case. The test environment allows to send events from
one machine to another using the different services. It is done on a 10 Mbit Eth-
ernet dedicated LAN with a PC 300 MHz PII as sender and a PC 366 MHz PII
as receiver. In case of Visibroker and Fiorano EMS where a central dispatcher
is required, we use an extra PC 350 MHz PII.

The first scenario computes the average transmission time of different-sized
events. In that scenario, the event size is varied from 1 kB to 1 MB while the
number of transmitted events remains constantly 500. The result illustrated in
Figure 3 shows that in all cases the average transmission time increases with the
size of events. The best results are provided by the unreliable iBus implementa-
tion. The reliable iBus resides on the second place. Here, iBus profits from not
having a central dispatcher as the others. Comparing the others, the Fiorano



3,0000

2,5000

2,0000

-~ - -IBus 20.1 (unreliable)
— -4 — Bus 20.1 (rellable)
AgentBus 1.0
— % = JMS (Fiorano EMS 3.1)
— 4 Corba Event Channel (Visibroker 3.4)

15000

Average transmission
time for one event [s]

1,0000

0,5000

0,0000

1 5 10 50 100 500 1000
Size of event [kB]

Fig. 3. Average transmission time of different-sized events

EMS System returns better results than Visibroker. As expected, the transmis-
sion time of AgentBus events is insignificant higher than reliable iBus events
since the test is based on top of the reliable iBus.

In the second test scenario, we measure the bandwidth reached during the
transmission of events whereas the number of sent events varies from 10 to 10000
and the event size remains constantly 10kB. The results illustrated in Figure 4
show that the reached bandwidth depends on having an extra dispatcher or
not. The iBus and AgentBus only reach about 200 kB/s bandwidth for a small
number of events whereas Visibroker and Fiorano EMS constantly return results
between 300 kB/s and 350 kB/s. When raising the number of events higher than
5000 the results change. The iBus (and respectively AgentBus) reaches results
around 500 kB/s whereas a maximum of about 810 kB/s was reached without
using a messaging middleware at all. Visibroker and Fiorano EMS do not depend
on the size of transmitted events. This is probably due to the dispatcher (Corba
Event Channel or JMS kernel) which caches the results and dispatches them
with a constant bandwidth.

Furthermore, we tested a small multicast scenario with one sender and two
receivers. We recognized that the results of iBus improved due to its usage of IP
multicast. But since the performance results do not improve significantly we do
not present them here. To summerize the measurements, our results show that
the iBus implementation is well scalable for either a lot of traffic or large data
items. Visibroker and Fiorano JMS returns good results for smaller systems.

6 Conclusion & Outlook

Messaging Systems are a new and exciting way to realize new forms of network-
ing in a very dynamic manner. Especially when used with software agents this



10

600,0000

500,0000

400,0000

-5 --1BUS 2.0.1 (unreliable)

— 4 iBus 2.0.1 (reliable)

—=—Agent Bus 1.0

~ %~ Fiorano EMS 3.1

— - Corba Event Channel (Visibroker 3.4)

300,0000

Bandwidth [kBIs]

200,0000

100,0000 =

0,0000
10 100 500 1000 5000 10000

Number of events

Fig. 4. Bandwidth of event transmission

will open possibilities for new applications that don’t need any configuration
for finding their communication partners. Quality of Service, Encryption etc.
should be integrated directly into the middleware without changing the agents
or applications.

With the CIA Agent Bus we have designed a powerful yet easy to use mes-
saging system that is esp. suitable for agent communication. As it may reside on
virtually any available Java messaging solution, we are very flexible in choosing
and comparing different products. As we have demonstrated with our tests, our
current base, iBus, can be adapted to different needs (performance vs. reliability)
very well. Our future work will integrate more messaging products like Corba
or JMS into the AgentBus. On the other hand we will add functionality like
security or resilience features to the AgentBus.

References

1. Kargl, Illmann, Weber: CIA - a Collaboration and Coordination Infrastructure for
Personal Agents. DAIS 99, Juni-July 1999, Helsinki, Finland

2. Notification White Paper. IONA Technologies PLC, 1998, Dublin, Ireland

3. Hapner, Burridge, Sharma: Java Message Service, Version 1.0.1. Sun Microsystems
Inc., JavaSoft, 1998, MointainView, USA

4. Object Management Group. http://www.omg.org/

5. Telefonica, Hewlett-Packard: Joint submission to Notification Service RPC. 1998

6. CORBAservices: Common Object Services Specification, 4. EventService Specifica-
tion. OMG, 1997, Framingham, USA

7. Softwired Inc. http://wuw.softwired-inc.com/

8. Fiorano Software, Inc. http://www.fiorano.com/



