Connected Vehicles: Surveillance Threat and Mitigation

Jonathan Petitt”

jpetit@securityinnovation.com

Djurrre Broekhuist,
Michael Feiri

Frank Karglt*

frank.kargl@uni-ulm.de

djurreb@gmail .com
m.feiri@utwente.nl

“Security Innovation
Wilmington, MA
United States

ABSTRACT

Intelligent Transportation Systems (ITSs) are an upcoming
technology that allow vehicles and road-side infrastructure
to communicate to increase traffic efficiency and safety. To
enable cooperative awareness, vehicles continually broadcast
messages containing their location. These messages can be
received by anyone, jeopardizing location privacy. A mis-
conception is that such attacks are only possible by a global
attacker with extensive resources (e.g. sniffing stations at
every intersections giving a full city-wide coverage). In this
paper, we demonstrate the feasibility of location tracking
attack in an ITS in the presence of a mid-sized attacker (i.e.
an attacker that has partial network coverage but can choose
which parts to cover). We conduct an empirical study on the
campus of the University of Twente by deploying ITS hard-
ware on a small scale. As road intersections are likely targets
for an attacker to eavesdrop, we propose a graph-based ap-
proach to determine which intersections an attacker should
cover. We also derive a cost analysis that gives an indica-
tion of the financial resources an attacker needs to track a
vehicle. To mitigate location tracking attacks, we assess the
benefit of pseudonym change strategies and propose a pri-
vacy metric to quantify a vehicle’s level of privacy in the
presence of mid-sized attackers. Experiment results demon-
strate that tracking is feasible even if such an attacker covers
a small number of intersections. For example, with only two
sniffing stations, a mid-sized attacker can track the target
vehicle on a zone-level 78% of the time, and on a road-level
40% of the time. Pseudonym schemes harden tracking by
increasing the number of sniffing stations required.

Keywords
Privacy, Intelligent Transportation Systems, Tracking At-
tack

1. INTRODUCTION

Modern vehicles are becoming increasingly equipped with a
multitude of sensors that allow them to gather data on their
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surroundings. Vehicles may, for example, collect informa-
tion about the temperature, road conditions or the distance
to other objects and vehicles. Along with these sensors, ve-
hicles are also starting to become equipped with wireless
communication systems that allow them to communicate
with other vehicles and infrastructure and set up Vehicular
Ad-Hoc Networks (VANETS). Combining these two features
allows for cooperative awareness and the development of ad-
vanced applications. These networked, context-aware vehic-
ular networks along with their supporting infrastructure are
often called Intelligent Transportation Systems (ITSs).

ITS applications can significantly improve driver safety and
comfort, for example by providing warnings on road dan-
gers or traffic jams, or automatically braking a vehicle when
a collision seems likely. At the same time, vehicles collecting
and sharing data about themselves and their surroundings
gives rise to privacy issues. Many envisioned ITS applica-
tions rely on vehicles knowing the position of both them-
selves and their neighbours. Therefore, as part of cooper-
ative safety applications, real-time location and trajectory
beacons are periodically broadcast. Without privacy pro-
tection, broadcasting these beacons jeopardises the location
privacy of drivers by allowing them to be tracked. Current
standards acknowledge the issue of privacy, and recommend
the use of short-term credentials (named pseudonyms) in-
stead of long-term credentials. However, detail regarding
pseudonym management, and especially pseudonym change
strategies, are still lacking.

A general misconception is that location tracking attacks are
only accessible to global observers with extensive resources
(e.g. governmental agencies, prevalent companies). But the
deployment of ITSs will put radio networking equipment
into the hands of the general public. This allows anyone to
eavesdrop vehicle-to-x communications, and thus, to track
vehicles. Tracking may be of particular interest to criminals
when we consider certain classes of vehicles, such as police
vehicles or money transports. For example, if burglars could
track patrolling police vehicles they can wait until all police
vehicles are outside of a certain area before attempting a
robbery, which would increase the response time before the
police can be at the crime scene to intervene. Besides the
criminal use-case, the ability to track specific individuals in
real-time is attractive for businesses, insurance companies,
or any curious citizen. We introduce a new type of attacker,
named the mid-sized attacker, who can install sniffing sta-
tions at specific locations to perform tracking attacks.



In this paper we investigate empirically the feasibility of lo-
cation tracking attacks in an intelligent transportation sys-
tem, by deploying ITS equipment on the campus of the Uni-
versity of Twente. To our knowledge this is the first real-
world experiment that demonstrates location privacy attack
in VANETs. Results show that deploying two sniffing sta-
tions is sufficient to give 78% zone-level tracking (i.e. iden-
tify if the security guard vehicle is in the residential or busi-
ness area of the campus). By determining the requirements
and resources of an attacker, a cost model is derived, giving
a realistic overview of the likelihood of privacy attacks when
ITS will be deployed. Finally, to mitigate tracking, we assess
the benefit of different pseudonym change strategies by using
a new privacy metric that captures the mid-sized attacker
capabilities. We conclude that even though pseudonyms
cannot eliminate the risk of tracking completely, they can
still form an important line of defence. Through this paper
we hope to shed light on the complexities of location pri-
vacy in vehicular networks, and more importantly, to raise
awareness of the need to ensure such privacy in all upcoming
ITSs.

The rest of this paper is organised as follows: Section 2 puts
our research into context by examining the related work.
Section 3 gives a description of the system model, describ-
ing what components constitute an ITS. Section 4 details the
attacker model considered in this paper. Especially, it in-
troduces the mid-sized attacker, which is in our opinion the
most realistic type of attacker. Section 5 introduces the new
privacy metric used to capture the mid-sized attacker capa-
bilities. Section 6 describes the experiment setup, identifies
the best candidate locations for sniffing stations placement
using a graph-based approach, and describes the data collec-
tion. Section 7 applies the hybrid privacy loss function to the
experimental data to show the benefits of pseudonym change
and derive a cost model. Section 8 concludes the paper and
outlines future work. The paper is also complemented with
appendices, which present results of zone-level tracking (Ap-
pendix A) and road-level tracking (Appendix B).

2. RELATED WORK

Location privacy is defined as a special type of information
privacy which concerns the claim of individuals to deter-
mine for themselves when, how and to what extent location
information is communicated to others [3]. Three negative
effects associated with a failure to protect location privacy
are location-based spam, personal well-being and safety, and
intrusive inferences. The latter is most relevant to the issue
of tracking, as being able to identify at which times a person
is at which locations allows for inferences of, for example, a
person’s political views, state of health, or personal prefer-
ences. To protect location privacy, Duckham and Kulik pro-
posed technical solutions such as anonymity, pseudonymity
and obfuscation [3]. In ITS, anonymity and obfuscation
of location data might drastically reduce the data quality,
and thus jeopardize the cooperative awareness. Therefore,
pseudonymity (i.e. using short-term identifier) is the only
solution considered in current standards. A comprehensive
survey of pseudonym schemes in Vehicular Ad-hoc Networks
(VANET) has been done in [11].

However, using a single short-term identifier still allows link-
ing of consecutive location samples to each other, and through

this, even to an individual. For example, Hoh et al. anal-
ysed one week of pseudonymised GPS traces from drivers in
Detroit, and their home-finding algorithm was able to find
home locations for 85% of the drivers [6], with a median ac-
curacy of 61 metres [8]. Using a reverse white pages lookup,
correct identification of driver’s home address reached 13%
and names 5%. To decrease this pseudonym linkability,
pseudonyms should be changed during a vehicle’s trip [15].

With the many different proposed pseudonym change strate-
gies [11], it is important to consider what trade-offs come
with introducing pseudonyms into an ITS. Lefévre et al. in-
vestigated the effects of pseudonym change strategies on an
intersection collision avoidance (ICA) system [9]. They anal-
ysed the effects of three pseudonym strategies using the rate
of missed accident interventions, the rate of avoided colli-
sions, and the rate of failed interventions. They found that
silent periods longer than 2 seconds strongly affect ICA ap-
plications, and that the adaptive approach only authorised
average of 10 percent of pseudonym changes when the silent
period was larger than 2 seconds. This indicates that whilst
pseudonym changes and silent periods may be beneficial for
location privacy, they may also have an impact on the main
functionalities of an intelligent transportation system.

To determine how effective changing pseudonyms are, Buttyan
et al. defined all areas that are unobserved by an adversary
as a mix-zone [2]. As vehicles do not know when they are
in a mix-zone, pseudonyms are constantly changed. They as-
sumed that this rate of change is high enough that pseudonyms
are changed at least once per mix-zone. The adversary
strength was varied by eavesdropping on the k£ busiest junc-
tions, with an eavesdropping range of 50 meters. Different
traffic densities were simulated, and the success of the adver-
sary was quantified by calculating the number of successful
tracking attempts. Tracking was considered successful when
a vehicle entering a mix-zone was correctly linked to a ve-
hicle exiting that mix-zone. Linking was done using a basic
dead reckoning approach where the probability of linking the
correct vehicle was based on the speed and distance covered
in the mix-zone. They found that tracking was successful
60% of the time with 30 eavesdroppers. However, they did
not conduct real experiment to prove the feasibility of such
attack and did not investigate pseudonym change strategies.

Humbert et al. [7] considered the problem of deploying mix
zones in the presence of a passive adversary equipped with a
limited number of eavesdropping stations. They proposed a
game-theoretic model to evaluate the strategic behaviors of
players in such tracking games. In the incomplete informa-
tion case (which corresponds to the case considered in this
paper), they noticed that mobile nodes’ strategy highly de-
pends on their belief about the type of adversary. Their
results quantified how the lack of information by mobile
nodes about the attacker’s strategy leads to a significant
decrease in the achievable location privacy level at Bayesian
Nash Equilibrium. Their work enables system designers to
predict the strategy of a local adversary and mobile nodes
with limited capabilities in tracking games. However, this
abstract work did not conclude on a cost model (number of
eavesdropped intersections w.r.t. privacy level) nor compare
different pseudonym change strategies.



infrastructure I |
= connectivity

g
E])

h 3
ulti-ho
\ fg]rwardinpg =

D —, Negllllg

broadcast range
(single-hop.

Figure 1: Typical ITS setup

Shokri et al. [13] evaluated location-based applications that
expose users location to curious observers, who might collect
this information for various monetary or malicious purposes.
They proposed a formal framework for quantifying location
privacy in the case where users expose their location spo-
radically. Indeed, in most location-based applications, users
expose their location in a sporadic manner as opposed to
a continuous manner. In the context of ITS, we can con-
sider ’'not using pseudonym’ as continuous exposition, while
‘using pseudonyms’ provides a sporadic exposition (during
the time frame the same pseudonym is used). In [13], lo-
cation privacy is preserved by using anonymization, loca-
tion obfuscation, or broadcast of fake location beacons. As
described earlier, these mechanisms might have undesired
effects on safety systems that require cooperative aware-
ness [9]. Therefore, we do not consider them in this paper.
Moreover, we differentiate from this work by investigating
pseudonym changes and considering a mid-sized observer.

3. SYSTEM MODEL

We consider a VANET consisting of both vehicles and sup-
porting road-side infrastructure. An example of such a set
up can be seen in Figure 1. To allow vehicles in a VANET to
send and receive messages, they are equipped with a station
called an On-Board Unit (OBU). An OBU typically consists
of a car computer with networking hardware. An OBU can
collect diverse sensor information such as vehicle trajectory
data or road conditions, and process and send these data.
Apart from the OBUs in the vehicles, there is also static
infrastructure to improve data dissemination and to provide
connectivity with back end systems. These static infras-
tructure stations consist of Road-Side Units (RSUs), which
are similar to OBUs except that they are fixed in place and
typically have additional network access.

Each participating vehicle will broadcast to its immediate
neighborhood (i.e. one hop) at least once per second a posi-

tion beacon named Cooperative Awareness Message (CAM) [1]

in Europe and Basic Safety Message (BSM) [12] in US. In
this work we used CAM, but results are also valid for BSM.
A typical CAM includes the unencrypted latitude and lon-
gitude of a vehicle, its trajectory, speed, a timestamp and
an identifier.

Vehicles use pseudonyms to increase unlinkability between
messages transmitted from the same vehicle. A pseudonym
is a unique identifier with which a vehicle can communicate
to other vehicles and RSUs. Pseudonyms can be changed
according to a pseudonym change strategy. In the context of
VANETS, a pseudonym change should affect all public infor-

mation that can be directly linked to a vehicle. This means
that all identifiers on the communication stack, such as a
vehicle’s MAC or IP address, as well as any (public) keys
that the vehicle uses for authentication should be changed.
Vehicles will, however, probably only have a limited num-
ber of pseudonyms available to them, and generating new
pseudonyms too often is not feasible. This is especially true
as access to pseudonyms needs to be limited so that vehicle
cannot use multiple pseudonyms at the same time, as this
would confuse ITS applications and open up the possibility
of sybil attacks [17]. To reduce this problem, it is logical to
use the same pseudonym for multiple messages before the
pseudonym is changed. To stop an attacker linking old and
new pseudonyms, a pseudonym change should be spatially
and temporally coordinated amongst different vehicles. In
general this means the pseudonym changes are only effective
if there are enough neighbours to confuse an attacker, and
these neighbours need to change pseudonyms around the
same time, resulting in collaborative pseudonym changes.

4. ATTACKER MODEL
Within the attacker model defined in [10], we define an at-
tacker targeting the communication channel as follows:

e Scope: The scope is the area over which the attacker
can eavesdrop. On one end of the spectrum is the
global attacker, which has complete coverage and can
eavesdrop on any message that has been transmitted
in the network. On the other end of the spectrum is
the local attacker. This is an attacker that can only
cover one small area. In between these two extremes,
there is the mid-sized attacker (MA), which can choose
to cover any number of different local areas without
obtaining complete network coverage.

e Passive/Active: A passive attacker is only capable of
receiving and processing any packets that it receives,
whereas an active attack can also inject packets into
the network.

e Internal/External: An internal attacker possesses keys
and credentials that make it a legitimate participant
of the system, whereas an external attacker does not.

e Tracking Period: The tracking period defines over what
period an attacker tries to link location samples and
track a vehicle. We distinguish between the following:

— Short-term tracking means that an attacker tries
to link consecutive location samples occurring in a
time frame of a couple of seconds. Given multiple
location samples of different vehicles, the attacker
tries to link the location samples to the specific
vehicles that sent them.

— Mid-term tracking means that an attacker tries to
link position samples from a single trip. A vehicle
trip is the entire time period from when a vehicle
start a journey until it ends, and can be in the
order of a couple of minutes to a couple of hours.

— Long-term tracking means that not only does an
attacker try to link consecutive location samples,
but it is also tries to link different sets of location
samples from different trips. Long-term tracking
can cover a time period of over one day. For ex-
ample, the attacker tries to identify that a police
vehicle that was tracked in a certain area one day



is the same vehicle that passes through that area
the next day or a couple of days later.

e Road-level/Zone-level Tracking: The tracking level is
the level of granularity that a vehicle is tracked. Road-
level tracking means that an attacker knows which
road a vehicle is on. Zone-level tracking means that
an attacker knows which zone, or set of roads, a vehi-
cle is on.

As we are interested in location privacy attacks, we con-
sider in this paper a mid-sized, passive, internal/external,
mid/long-term tracking at road/zone level, type of attacker.
This attacker can eavesdrop on CAMs transmitted by ve-
hicles by deploying static sniffing stations at road intersec-
tions. The risk of tracking is then relative to the capabilities
of an attacker in linking pseudonyms by (physically) iden-
tifying the target vehicle, for instance, manually by the at-
tacker or automatically by radio fingerprinting, fingerprint-
ing based on the contents of CAMs, or with cameras and
object recognition techniques. These extra methods of re-
identification might increase the resources needed by an at-
tacker to track a vehicle. In Section 6, we describe how an
attacker can determine which intersections to cover. Any
intersection which is covered by a sniffing station is called
an observed intersection. As the MA coverage depends on
her available resources (e.g. number of sniffing stations she
can deploy), we also investigate how the number of sniffing
stations deployed impact the trackability.

5. PRIVACY METRICS

In order to compare the privacy level of a vehicle in differ-
ent scenarios, a quantitative measure of privacy is needed.
Privacy metrics allow us not only to assess when and where
a vehicle’s privacy is under threat, but also to compare the
effectiveness of different mitigation strategies that aim to in-
crease privacy. However, we consider an attacker that can-
not observe the entirety of the network, which affects the
applicability of traditional privacy metrics [7]. Thus, exist-
ing metrics are adapted to reflect the mid-sized attacker.

5.1 Hybrid Privacy Loss Function

When a vehicle drives through an area with only few ob-
served intersections and a high traffic density, it is already
intuitive that it experiences a higher level of privacy than
when the same vehicle travels through an area with many
observed intersections. As a vehicle can transition between
these two situations while it is moving, it makes sense not to
look at a single value of privacy for a vehicle, but to define
a function that describes how the level of privacy changes
over time. Such functions are typically called location pri-
vacy loss functions, and model how a vehicle loses and gains
privacy over time. For example, Freudiger et al. proposed a
loss function that describes the amount of privacy lost in re-
lation to the time, the time since the last pseudonym change
and the duration of the silent period [4]. In this model, pri-
vacy loss is set to zero after a pseudonym change and during
the subsequent silent period. After this, the level of pri-
vacy loss increases according to a sensitivity parameter A,
which models the tracking power of the attacker. Privacy
loss can increase to a set maximum, which is dependent
on the number of vehicles involved in the last pseudonym
change. Whilst this privacy loss function does give a good
indication of the level of privacy that a vehicle has due to

pseudonym changes, it does this under the assumption of a
global attacker. This means that outside of silent periods,
the level of location privacy is always decreasing. A mid-
sized attacker is however weaker, and thus privacy does not
always decrease. In fact, privacy will only decrease when a
vehicle is within an observed area. Outside of these observed
areas the level of privacy will stay the same, or may even
increase due to other sources of uncertainty. Thus, the pri-
vacy loss function described above is not directly applicable
to our scenario.

To account for these limitations, we propose an adjusted
privacy loss function that takes into account the mid-sized
attacker characteristics. This hybrid privacy loss function
takes into account the following three sources of uncertainty
in the presence of an MA: 1) uncertainty about which vehi-
cle is the target vehicle; 2) uncertainty about the road sec-
tion a vehicle is on; 3) uncertainty about the exact location
of a vehicle on a road section.

The first source of entropy can be gained by collaboratively
changing pseudonyms with other vehicles on the same road
section, as described in Section 3. The second source of
uncertainty is the different routes that a vehicle can take
between intersections. This uncertainty is not present if the
attacker observes adjacent intersections, as then, there is
only a single possible route. This uncertainty is however
present as soon as a vehicle crosses an unobserved intersec-
tion. The final source of uncertainty is the estimation error
that an attacker makes on the travel time of a target between
intersections. The longer the road between intersections, the
more difficult it becomes to accurately predict where the tar-
get vehicle is on that road. Thus the longer a vehicle drives
without being observed, the greater this uncertainty is.

A vehicle can gain privacy through any of these three sources.
However, a vehicle can also lose privacy. In our model, this
occurs when a vehicle encounters an observed intersection.
Thus, when a vehicle encounters many observed intersec-
tions, its overall level of privacy will be lower than when it
encounters many unobserved intersections, which confirms
our intuition. To establish when a vehicle gains or loses pri-
vacy, the current state of the vehicle is partitioned into dis-
tinct sets of events. At any discrete time ¢, a vehicle is either
in an observed area, or an unobserved area, and within an
unobserved area it is either changing pseudonyms, crossing
an unobserved intersection or just driving. Thus, four sets
of events can be defined, namely Ty, for all samples when
a vehicle changes pseudonyms unobserved, 7, when a ve-
hicle crosses an unobserved intersection, T,s when it drives
on an unobserved road, and finally T,,s when the vehicle is
observed by a sniffing station. The resulting hybrid privacy
loss can be seen in Equation 1.

Nveh

max(Ponm(t — 1) — > pi - logps, Pemax) if t € Typc
i=1

0 if t € Tops

Ponm(t) =

Nroad
max(Pne(t —1) — > pj - logpj, Pmax) ift € Ty
Ponm(t) = i=1

0 if t € Tops
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P(t) = Ponm(t) + Pint(t) + Proad(t) (1)

This gives P(t), a measure of privacy of the pseudonym used
by a vehicle at time ¢. Privacy is gained according to the
sum of the three sources of privacy. The first way a ve-
hicle can gain privacy is similar to the privacy loss func-
tion given by [4] and is when an unobserved pseudonym
change occurs at time ¢ (¢ € Typc). This is given by Ppnm(£),
and the new level of pseudonym privacy is then the previ-
ous level, modified by the amount of entropy gained by the
pseudonym change. The amount of entropy gain is depen-
dent on Nyen, the number of vehicles that collaborated with
the pseudonym change, and p;, the probability that each ve-
hicle is the target vehicle. A vehicle can also gain privacy by
crossing an unobserved intersection at time ¢ (¢ € Ti). The
level of intersection privacy is given by Pnt(t), and is the
previous level modified by the amount of entropy gained by
crossing the intersection. The amount of entropy gain is de-
pendent on Nyoad, the number of roads the vehicle can take at
the intersection and p;, the probability of taking each road.
Note that these two events can happen at the same time,
and both sources of entropy will be added to P(¢), the total
privacy level at time t. The final way to gain privacy is due
to the uncertainty of the exact location of the vehicle when
it drives on an unobserved road section at time ¢ (t € Tyrs).
The level of privacy gained is dependent on tj.s, which is the
last time the vehicle was observed. Thus the longer the ve-
hicle has driven since the last observation, the more privacy
is gained. How fast the level of privacy increases is depen-
dent on the sensitivity parameter A\, which models how well
the attacker can predict the vehicle’s exact position on any
given road section. The total level of privacy P(t) is then
the sum of these three privacy sources when the vehicle is
not observed at time t (t ¢ Tobs), and a vehicle loses all lo-
cation privacy when it is observed (¢t € Tobs), as the attacker
now knows the location of the observed pseudonym.

All the methods to increase privacy are limited by a max-
imum value. In the case of pseudonym changes, the maxi-
mum level of gained entropy is limited by the number of ve-
hicles in the tracking area, as it is not possible for an attacker
to be confused between more vehicles than are present. This
maximum can then be given by Ppmax = log(Nw ), where Ny
is the total number of vehicles that an attacker can be con-
fused by in the tracking domain (i.e. the campus in the
following experiment). The same is true for the entropy
gained by crossing unobserved intersections. In this case,
the attacker cannot confuse the road an attacker is on be-
tween more than the total number of roads in the tracking
domain and is given by Pmax = log(Ny), where Ny is the
total number roads in the tracking domain. Finally, the un-
certainty that an attacker has in the exact location on a
road of a vehicle cannot exceed the length of the longest
road, Pimax. The range of values for P(t) is then from a
minimum of 0 to a maximum of Pymax + Prmax + Pamax-

5.2 Example
Figure 2 illustrates the privacy level of a vehicle over time.
In this Figure, a short period of time from the experiment

Privacy level over time

Privacy level
Y

0 5 10 25

Time (minutes)

Figure 2: Output of privacy loss function over time

described in Section 6 is considered, where Nyo.q = 35 and
it is assumed there are 65 vehicles in the area, giving Nyeh =
65. Furthermore, the attacker considered does not care
about where on a road section a vehicle is, giving Proad = 0.
This then gives a maximum privacy level of Ppomax + Prmax +
Pimax = 10g2(35) + log2(65) + 0 = 11.15. Privacy gains from
pseudonym changes are shown by dashed lines and gains
from intersections are shown by solid lines. It can be seen
that at ¢ = 0 the privacy level is 0. A short time after
this, the vehicle starts to gain privacy, through a combi-
nation of pseudonym changes every 5 minutes, and from
crossing unobserved intersections. At t = 5, the maximum
privacy level from crossing intersections (Pnt) has reached
its maximum (Prmax), and the vehicle can only gain privacy
by changing pseudonyms. This happens twice between t = 5
and t = 13.5, and at ¢t = 13.5 the vehicle attains the maxi-
mum level of privacy achievable in this scenario. Finally, at
t = 17 the vehicle comes within range of a sniffing station,
and the privacy level is reduced back to 0.

We consider that the privacy level of a vehicle drops to 0 as
soon as it is observed, a worst case scenario that highlights
the benefit of pseudonyms. In reality, this may however not
necessarily be the case. For example, receiving a single CAM
from a vehicle at an intersection may give an attacker no
information on its ingress or egress direction, and thus, will
not completely reduce the privacy level to 0. This decrease
in privacy would be better modelled by a decay function. By
relaxing this assumption, the benefit of pseudonyms would
be even more significant.

6. EXPERIMENT
6.1 Setup

To empirically investigate the effects of vehicle-to-x commu-
nications on privacy, two different types of hardware were
deployed. Firstly, a transmitting station was installed in a
vehicle, which would transmit messages that an attacker can
eavesdrop. Secondly, sniffing stations were deployed to ac-
tually eavesdrop on these messages and use these to track
the vehicle. For the sniffing stations the Cohda Wireless
MK3 platform was used. With its built-in 802.11p radio,
the Cohda platform allows two antennas to be connected
for 802.11p connectivity. High-gain Smarteq V09/54 anten-
nas with a 9 dBi gain were used in combination with the
platform. As transmitting station for the vehicle, a Nexcom
VTC6201 was used, expanded with a Unex CM10-HI Mini-
PCI module with custom drivers for 802.11p connectivity.
This module allows for the connection of two antennas and it



Figure 3: The battery, battery charger and Nexcom
in-vehicle computer

has an SMA connector for a GPS module. For antennas, two
MobileMark ECOM9-5500 were used, covering a frequency
range of 5.0-6.0 GHz. These are high-gain 9dBi antennas,
with a magnetic mount so that they can easily be fixed to
the roof of a vehicle. The Nexcom device was powered by
the 12V connector of the vehicle. However, this meant that
as soon as the vehicle turned off, the power to the computer
would be cut and it abruptly turned off as well. To prevent
this from happening, a battery buffer and a battery charger
were added. The complete set-up can be seen in Figure 3.
The in-vehicle computer can be seen on the right hand side,
whereas the battery charger and battery itself can be seen
on the left. All equipment was screwed onto a mounting
board which could be placed securely in the trunk of the
security guard vehicle.

The sniffing stations were deployed at intersections, as such
locations maximize the number of vehicles that come within
range [5, 7, 14] and offer a wide unobstructed view of the
roads connecting to the intersection from different direc-
tions. An additional advantage of observing intersections
is that the turn-off that a vehicle takes at an intersection
in large part determines its route until it reaches the next
intersection, where it can turn again. Of course, if there are
unobserved intersections in between, then there is always
the chance that the vehicle takes a turn onto a different
road before the next observed intersection is reached, but it
does allow some inferences. For example, if an attacker can
observe two non-consecutive intersections, and a vehicle is
observed in range of the first intersection and then in range
of the second intersection within some time frame, then it
can reasonably concluded which road the vehicle took with-
out needing complete reception coverage over this road. This
means that an MA can attempt to track a vehicle by using
its limited coverage and street-level knowledge of the road
network between coverage areas.

6.2 Graph-based View of the Road Network

An MA by definition has some limitations to her resources
and the number of sniffing stations she can deploy. This
means that an MA also needs to choose which intersections
to cover, and which to leave as uncovered gaps. To deter-
mine which intersections on the University of Twente cam-

Figure 4: Turning road network into a graph

pus may give the most information that can be used to track
a vehicle, key intersections and interconnecting roads were
represented as a graph. Intersections are represented by ver-
tices in this graph, and interconnecting roads as edges. The
resulting graph for the campus can be seen in Figure 4.

The graph gives an abstracted view of the road network,
and not all roads and intersections are included. For exam-
ple, when there are two routes between two adjacent inter-
sections (and there are no roads leading from these roads
to other intersections), then this is represented by a sin-
gle edge. Therefore, the graph gives a high-level overview
of which intersections are connected to each other, without
being concerned with the smaller details of the actual road
network. An intersection covered by a sniffing station can be
represented by removing the corresponding vertex from the
graph. The remaining graph then represents where a vehicle
can travel freely without being in range of an attacker.

This graph was utilized to determine which intersections
to cover, and three criteria were defined to help with this.
Firstly, an intersection with a large number of connecting
roads gives information on all of these roads. With the speed
and bearing of a vehicle, an attacker can know exactly which
road a vehicle came from and is going to, allowing an at-
tacker to infer a vehicle’s position over this larger number of
roads. In the graph, this translates to vertices with a large
degree (i.e. an intersection with a large number of connect-
ing roads), giving more information than vertices with a low
degree. Therefore, sniffing station placement should focus
on vertices with largest degree in the graph.

The second criterion are the so-called articulation points of
a graph. An articulation point in a graph is a vertex that
when removed will completely partition the graph into differ-
ent biconnected components. This is useful for an attacker,
because if this vertex is covered, then the attacker will al-
ways know in which biconnected component of the graph a
vehicle is. In other words, there would be no route that a ve-
hicle could take from one biconnected component to another



Figure 5: Intersection graph after covering (a) ver-
tex A and (b) vertices A and B

biconnected component, without passing through the inter-
section that the attacker observes. This allows an attacker
to narrow down the position of a vehicle to a certain section
of the area within which it wants to track this vehicle.

The third criterion is to cover the busiest intersections, as
vehicles are more likely to pass by these. This results in a
larger total time that a vehicle is in range of the sniffing
station, and thus leaks more information that can be used
to track it. An attacker could gain this information by look-
ing at historical traffic data, or even by first employing a
learning phase where statistical traffic data is gathered.

Using these criteria, we determined which intersections were
good candidates for sniffing stations placement on the cam-
pus. Looking at the graph, it can be seen that there is a sin-
gle vertex that has a degree larger than the others, namely
the vertex labelled A’ which has a degree of 5. This is also
the main entrance to the university and thus a busy intersec-
tion, complying to the third criterion as well. Therefore this
intersection was chosen as the location to place one of our
sniffing stations. For the placement of the second sniffing
station, articulation points were identified. The vertex la-
belled 'B’ was not an articulation point in and of itself. How-
ever, having decided that intersection A would be covered,
the corresponding vertex could be removed from the graph.
This gave the situation as shown in Figure 5(a), where inter-
section B becomes an articulation point. This meant that
covering both intersections A and B split the entire graph
into two different biconnected components where vehicles
could travel without crossing an intersection with a sniffing
station, as shown in Figure 5(b). Furthermore, these two
biconnected components consisted of the residential part of
the campus (the western biconnected component) and the
university part of the campus (the eastern biconnected com-
ponent). Hence, vehicles could not travel from one zone to
the other without being observed by a sniffing station, giving
the attacker insights which could compromise privacy.

Having decided which intersections to cover, one should then
decide where exactly at the intersections to place them. To
give as good a coverage of the intersections as possible, the
sniffing stations needed to be placed close to the intersec-
tions. They also needed to be placed somewhere where they
were protected from the elements and preferably with an in-
ternet connection to allow for remote log retrieval and check-

ing the operational status. This limited the placement to
buildings that were near the relevant intersections. For the
selected intersections this led to a simple choice, as there was
only one building near each of the intersections that could
be used. For intersection A this gave a distance of approxi-
mately 75 meters between the sniffing station and the centre
of the intersection. For intersection B the distance between
the centre of the intersection and the sniffing station was
approximately 110 meters.

6.3 Data Collection

Two sniffing stations were deployed to determine vehicle
trackability with a minimal number of sniffing stations. The
transmitting station in the vehicle and the sniffing stations
were deployed for a total of 16 full days. During this time,
approximately 300MB of CAM data were collected on all
stations combined. The vehicle logged all transmitted CAMs,
representing the ground truth. The sniffing stations logged
all eavesdropped CAMs, representing the observed data.
The vehicle took 411 trips, and transmitted 2,734,691 CAMs
in a total time of approximately 76 hours. The logs from the
sniffing stations on the other hand contained just over 68,542
eavesdropped CAMs. This meant that the sniffing stations
managed to pick up messages from the vehicle for a total
time of approximately 1.9 hours, and that only 2.5% of all
transmitted messages were eavesdropped. On average the
vehicle drove for 4.75 hours per day, of which 7.1 minutes
within range of a sniffing station.

The log files were processed to remove GPS errors and peri-
ods where the vehicle was stationary for prolonged periods
of time. Cleaning up the vehicle’s log removed 53.56% of
CAMs transmitted, going down to 1,270,016 CAMs. This
represented about 38.24 hours of useful driving data. On
the sniffing stations, 40,254 CAMs remained after cleaning,
a reduction of 41.27%. Of these remaining messages, 18,293
were received at intersection A at the main entrance of the
university and 21961 were received at intersection B. Our
eavesdropped messages then consisted of 3.17% of all trans-
mitted CAMs, and covered about 1.1 hours of vehicle driv-
ing time. Whilst this seems low, one should note that the
eavesdropped time is not equal to the tracking time, as an
attacker will attempt to infer where the vehicle was in the
periods where no messages were eavesdropped. Section 7
and Appendices A and B show that a considerable level of
tracking can be achieved even with this small percentage of
eavesdropped messages.

7. RESULTS

7.1 Application of Privacy Loss Function

The privacy loss function was applied to evaluate the level
of privacy that the vehicle had in the experimental sce-
nario. If the vehicle did not use pseudonyms, this meant
that FPomax = 0 and the vehicle could not gain any privacy
through pseudonym changes alone. However, the vehicle
could still gain some privacy through crossing unobserved in-
tersections. The maximum level of intersection privacy that
an attacker could obtain was Pmax = log(Ny) = log(35), as
there were 35 roads in the tracking area. The level of entropy
that a vehicle gained by passing an unobserved intersection
depends on the number of roads leaving an intersection, and
the probability that the vehicle took each road. For exam-
ple, an intersection where a vehicle almost always takes the



Normalized privacy level with pseudonyms

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Normalized privacy level

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of observed intersections

Figure 6: Privacy level for different pseudonym
change strategies

same road will give less entropy than an intersection where
the vehicle is equally likely to take each road. This data
was already available for the vehicle in the ground truth,
and this was used to establish the probabilities of each road
being taken. For each intersection ingress event, how of-
ten each road at that intersection was taken was calculated.
This gave the probability p; in the loss function, and al-
lowed calculation of the entropy gained for each unobserved
intersection that the vehicle could pass.

To compare different pseudonym change strategies, the over-
all privacy level that a certain change strategy results in
needed to be determined. To do this, the mean privacy level
over all location samples was calculated. The normalized
privacy level of the vehicle in our experimental scenario can
be seen in Figure 6. This figure shows the privacy level of the
vehicle for different numbers of observed intersections. This
takes into account two different pseudonym change strate-
gies, namely per trip and periodic. With pseudonyms, a
vehicle can gain entropy as the attacker may confuse the tar-
get vehicle with all other vehicles that change pseudonyms
on the same road at the same time. The factor that in-
fluences this privacy level is the number of vehicles that
change pseudonyms at the same time, and so for each change
pi = ﬁ Furthermore, the total amount of privacy gained
by pseudonyms is limited by the total number of vehicles
present. To analyse pseudonyms in our experimental sce-
nario, assumptions need to be made about these variables,
based on what was considered to be realistic for the test
site. Firstly, we assume a ‘perfect pseudonym change’ (i.e.
change where there is enough generated uncertainty that
an attacker cannot link the old pseudonym and the new
pseudonym, and hence cannot conclude that they belong
to the same vehicle), thus it is assumed that every time
a pseudonym was changed, there were three other vehicles
that changed pseudonyms at the same time. Furthermore,
it was assumed that there were 100 vehicles in the track-
ing area, giving Pemax = log(Nw) = log(100). With these
assumptions, the effect of pseudonyms on the mean level of
privacy in our experimental scenario can be seen in Figure 6.

The level of privacy decreases as the number of observed
intersections increases, and changing pseudonyms more of-
ten gives a higher level of privacy. Furthermore, changing
pseudonyms more often seems to be most effective when
there are only a few observed intersection. When the number

of observed intersections increases, the pseudonym change
strategy used seems to have less influence on the privacy
level. In fact, for a pseudonym change period of 2500 sec-
onds, the privacy level is just marginally better than not us-
ing pseudonyms at all. This is due to the fact that with many
observed intersections, the chance is high that a vehicle will
come across such an intersection quickly, and all gained pri-
vacy will be lost. Thus, with more observed intersections,
the larger the influence of intersections on the privacy level,
and with fewer observed intersections the more pseudonym
changes affect the privacy level. For short pseudonym pe-
riods a higher privacy level is obtained, even with many
observed intersections. These results are however slightly
biased. Due to the computational complexity of calculating
the average privacy level for all combinations of all number
observed intersections, a random selection of intersections
was taken. Hence, this does not reflect exactly the selec-
tion that an attacker might make, as a smart selection of
intersections might decrease the privacy level even further.

This graph can be used to get an indication of what the
effects of pseudonyms are on the resource level of the at-
tacker. For example, to get the same privacy level, the
attacker needs to cover only 1 intersection in the case of
no pseudonyms, but needs to cover 10 intersections with a
pseudonym change period of 5 seconds. Therefore, intro-
ducing pseudonyms increases the resources that an attacker
needs to commit to be able to track a vehicle to the same
extent. Furthermore, the mean level of privacy does not
tell the entire story. Intersections cover a geographic area
in the tracking domain, and thus, there will be some areas
with higher level of privacy than others. Intuitively, areas
with higher density of observed intersection will result in a
lower privacy level, but also the probability of which roads
are taken will affect this level. To get a visual indication
of privacy, a privacy heatmap was generated. The privacy
heatmap of our experimental scenario with two observed in-
tersections, and a pseudonym change period of 300 seconds,
can be seen in Figure 7. In this Figure, it is clear that
there is an overall low level of privacy around the observer
intersections. Only around unobserved intersection is the
privacy level somewhat higher, with privacy being the high-
est the furthest away from the observed intersections. By
using a heatmap to visualize our hybrid privacy loss func-
tion, it is possible to get an intuitive understanding of how
the placement and quantity of sniffing stations affects the
privacy level of a vehicle. For more results regarding zone-
level tracking and road-level tracking, we refer the reader to
Appendices A and B.

7.2 Cost Model

The attacker resources determine the number of intersec-
tions that can be observed. These resources consist of time
to install hardware, computational resources, knowledge to
analyze eavesdropped messages, and financial resources to
purchase sniffing stations. Installing sniffing stations and ob-
taining the computational resources and knowledge needed
to track a vehicle is easy. The main limiting factor is the
financial costs to purchase sniffing stations.

The cheapest solution for a sniffing station including anten-
nas came to approximately €500. To cover all intersections
on the campus of the University of Twente, an attacker
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Figure 7: Privacy heatmap for an attacker covering
two intersections (A and B)

would need to place a sniffing station at 21 intersections.
This would mean a financial cost of 21x €500 = €10,500.
However, not all intersections may need to be covered to
track a vehicle, and adding more intersection results in di-
minishing returns. Experimental results show that only 8
of the 21 intersections are sufficient to track a vehicle on a
road-level up to 90% of the time. An attacker would then
only require €4000. If the attacker is interested in zone-level
tracking, only two intersections on zone boundaries need to
be observed to correctly predict whether the vehicle was in
the residential or university part of the University of Twente
78% of the time. If five intersections are observed on the
zone boundaries, this prediction accuracy increases to more
than 95% (see Table 1 of Appendix A). One should note
that for zone-level tracking, the attacker does not need an
accurate location. Nevertheless, on a road-level tracking,
we managed to get accurate location with an error of max-
imum 20 meters. The scale can also be expanded by look-
ing at the area that an attacker can cover. The total area
of the University of Twente was approximately 1.75 km?.
Assuming the 21 sniffing stations required to cover this in-
tersection, this would mean that an attacker would require
approximately 12 sniffing stations per 1 km? that she wants
to cover. Given a sniffing station cost of €500, this results
in €6,000 per km?. If this is extrapolated to the entire city
of Enschede with a total area of approximately 143 km?,
an attacker would require 1716 sniffing stations, and an at-
tacker would need €858,000 to fully cover the entire city.
This is however only if the attacker does not consider the
road network and assumes that all intersections need to be
covered. If an attacker does not require 100% coverage and
uses the road network, significantly less financial resources
would be required. For example, if it is assumed that an at-
tacker only needs to observe 8 out of every 21 intersections,
then the costs of covering the whole city already drops to
€327,000.

One should note that we assume a sniffing station price of
€500, because as the technology is relatively new, a large
part of these costs cover research and development of the

hardware. It is expected that prices will drop significantly in
the upcoming years, as more competition comes to market,
and the production quantity increases to match increased
demand from ITSs being deployed. Beyond this, it is likely
that in the future other devices will be able to receive ITS
messages as well. Especially considering that 802.11p is just
a modification of 802.11a, we do see an influx of bringing
802.11p functionality to mobile phones [16]. Another op-
tion would be to use an inexpensive computer such as a
Raspberry Pi with an 802.11a dongle and a driver patch to
support 802.11p. This would already bring the costs of a
single sniffing station down to approximately €50. Follow-
ing the example above of an attacker that wants to cover
the city of Enschede using road network knowledge, using
this hardware would bring the total costs down to €32,700.
The similarity of 802.11p to 802.11a also opens up other at-
tack vectors. For example, if an attacker can compromise a
large number of 802.11a routers found in homes and patch
them to receive 802.11p messages as well, it could be pos-
sible to quickly create a sniffing station botnet covering a
considerable geographic area. Finally, the US Department
of Transportation has announced intention to mandate OBU
in all new vehicles in the near future. This means that it
would be possible to obtain sniffing stations from junk yard.

How pseudonyms affect the costs for an attacker can now
be considered. The main effect that pseudonyms have on
the financial resources required by an attacker, is that they
increase the number of sniffing stations that an attacker
needs to deploy to get the same tracking capabilities as with-
out pseudonyms. Looking at the normalized privacy level
in Figure 6, using no pseudonyms and covering 8 intersec-
tions leads to a normalized privacy level of 0.16. To get the
same privacy level with a vehicle that uses pseudonyms and
changes every 300 seconds, the attacker would need to cover
12 intersections, an increase of 50%.

The use of pseudonyms consistently makes it more difficult
for an attacker to track a vehicle to the same level as when
no pseudonyms are used, and so it is always advisable to use
a pseudonym scheme. Apart from increasing the number of
sniffing stations required to track a vehicle to the same level,
using pseudonyms may also force an attacker to change her
tracking methods (e.g. when a desired level of tracking can
never be reached, even by covering all intersections).

8. CONCLUSION AND FUTURE WORK

Privacy is a cornerstone of successful adoption of ITS by
the general public because connected vehicles will broadcast
location beacons, enabling location tracking. This is a de-
sirable feature at a local level (i.e. below one kilometer)
as this cooperative awareness is key to safety applications.
However, a larger trackability is not required for safety ap-
plications or traffic efficiency, and thus, should be prevented
by privacy protection mechanisms. Numerous pseudonym
schemes have been proposed in the past, but none were seri-
ously considered by standardization bodies yet. Perhaps this
is due to the general misconception that location privacy at-
tacks are only of interest when considering a global attacker
with extensive resources. So, to encourage standardization
bodies and governments to foster research regarding this is-
sue, we demonstrated that location tracking is accessible to
anyone with at least two 802.11p-capable devices.



In this paper we presented results from the first real world
experiment focused on tracking capability of a mid-sized ob-
server and pseudonym change frequencies. Experiment re-
sults demonstrate that location tracking is easy to perform,
and that two sniffing stations are sufficient to offer 40%
road-level tracking, while eight sniffing stations offer 90%.
We also introduced a cost model that gives an overview
of the attacker resources (i.e. number of sniffing stations
she can deploy) with respect to the privacy level for differ-
ent pseudonym change frequencies. This helps regulators,
policy makers and implementers to identify the appropri-
ate pseudonym change frequency in function of the assumed
attacker resources. Results also demonstrated that even if
pseudonyms cannot completely prevent location tracking at-
tack, they can significantly mitigate the risk.

We are now extending the tracking domain to city-wide sce-
nario to analyze the impact of the tracking domain scale and
its intersection density. These results will refine our cost
model. We have already found that there is no significant
difference between a campus-wide and city-wide road net-
work such as Orlando. However, we have noticed that road
networks following a Manhattan grid style provide an over-
all better privacy level. This is mostly because the topology
makes timing attack (i.e. correlation between ingress and
egress times used to decrease the anonymity set size) diffi-
cult. This brings the idea of ‘privacy enhancing road net-
works’, where road networks are designed with the concept
of privacy at their core. We will also propose to use ‘cities-
level privacy’ to adjust privacy protection (e.g. pseudonym
change strategy). Indeed, if the system knows the driver is
going to/through a city with overall low privacy level, then
it could increase the pseudonym change frequency or enable
more sophisticated mechanisms.
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APPENDIX
A. ZONE-LEVEL TRACKING

To investigate the relationship between the number of ob-
served intersections and the extent of possible zone-level
tracking, an attacker that had the resources to cover more
than two intersections was considered. By observing the
ingress and egress events at observed intersections, it may
be possible to determine in which region the vehicle was at
a specific time. In order to emulate such a scenario, we as-
sumed that the attacker could observe (at least) a 35 meter
radius around the centre of an observed intersection. Given
the fact that a sniffing station could also be weatherproofed,
an attacker could place a station close to an intersection even



Figure 8: Intersections on zone boundaries

when there are no buildings nearby. Such a sniffing station
could be battery powered, as it was found that the sniffing
stations could run for more than 24 hours using the battery
shown in Figure 3. Thus, with a practical signal range of
around 300 meters, a 35 m coverage area around an intersec-
tion is a conservative assumption, and an attacker would be
able to cover most intersections in this manner. The CAMs
from within the 35 meter area were then added to the set
of eavesdropped messages. The information from these mes-
sages was sufficient to determine the speed and trajectory of
the vehicle crossing an intersection, and so identify ingress
and egress events and directions.

The next step was to determine how observed intersection
events translated to zone predictions. Both ingress and
egress events at the two intersections were taken into ac-
count. If an ingress or egress event was observed, the di-
rection of the vehicle was used to determine what zone the
vehicle was in. For egress events it was assumed that the ve-
hicle stayed within this zone until the next observed event.
For ingress events, it was assumed the vehicle was in the cor-
responding zone since the last observed event. However, if
the vehicle traveled from one zone to the other unobserved,
then it was possible to record an egress event into one zone,
and then some time later observe an ingress event from an-
other zone, giving conflicting information. To solve this, the
time between these observations was divided into two equal
parts, and the egress zone was assigned to the first part and
the subsequent ingress zone to the second.

Five intersections were identified on the zone boundary be-
tween the residential zone and the university zone, as shown
in Figure 8. The next step was to determine the prediction
accuracy if the attacker had observed them. The prediction
accuracy of all different combinations of observed intersec-
tions was calculated, where the zone was predicted according
to observed intersection events, and then compared to the
actual zone as given by the ground truth. The prediction
accuracy was then the percentage of correctly predicted lo-
cation samples. The prediction accuracy for each number
and each combination of observed intersections can be seen

in Table 1. For example, row “1-3-5” means that the attacker
covered 3 intersections (1, 3, and 5), which gave a prediction
accuracy of 77.44%.

As expected, covering only a single intersection gave the
worst prediction accuracy, whereas covering all 5 identified
intersections leads to the best prediction accuracy of 95.28%.
The remaining incorrect predictions could be attributed to
zone transitions where the vehicle did not have a GPS fix,
as this meant that the sniffing station could not eavesdrop
on the vehicle’s trajectory and identify ingress and egress
events. For each additional sniffing station, the average
prediction accuracy increases by approximately 8.5%. This
could be useful for an attacker to determine the trade-off
between the costs of an additional sniffing station and the
desired prediction accuracy. From these results we can con-
clude that, given sufficient resources, an attacker can collect
the information required to accurately predict a vehicle’s
most likely zone.

B. ROAD-LEVEL TRACKING

To determine the effect of the number of observed intersec-
tions on road-level tracking, all large intersections within
the tracking domain were identified. Figure 10 shows the 21
large intersections found, along with their connecting routes.

Note that even when all intersections in a tracking domain
are observed, the observer is still a mid-sized attacker and
not a global attacker which could eavesdrop on all messages
in the entire area; due to the limited radio range, the areas
between intersections are considered unobserved. As in Ap-
pendix A, it was assumed that an attacker could observe the
35 meters surrounding the centre of each intersection. The
attacker could then fully track a vehicle within this intersec-
tion area, but additionally could infer which roads connect-
ing to the intersection the vehicle was on. More specifically,
when observing an egress event, the attacker can infer the
vehicle location up to the next intersection on this road.
After this point the vehicle has the possibility to change
roads, and if this intersection is not observed, then the vehi-
cle can no longer be tracked. By observing an intersection,
the road a vehicle is on is fully known until the vehicle has
the opportunity to change its route at the next unobserved
intersection. Vice versa, when observing an ingress event,
an attacker could infer the vehicle’s past location up to the
last intersection that it crossed.

With these assumptions, the percentage of all CAMs where
the attacker knew either exactly where the vehicle was (when
it was in range of a sniffing station), or exactly on which road
section the vehicle was (by inference as described above),
was calculated. This was done for every number of cov-
ered intersections between 1 and the maximum of 21. Fur-
thermore, every combination of intersections that an at-
tacker could cover was considered. This gave a total of

21
> (21.1) = 2097152 different combinations of intersections
i=0

1=

that an attacker of various resources could cover. The re-
sults of these calculations can be seen in Figure 9. This Fig-
ure shows both the maximum and mean tracking percent-
age for all combinations of n intersections. The maximum
tracking percentage is the maximum that an attacker can
obtain with n intersection, out of all possible combinations



_ #of 1 2 3 4 5
intersections
1]61.12% [ 1-2 [ 72.82% | 1-2-3 | 81.40% | 1-2-3-4 | 84.26% | 1-2-3-4-5 | 95.28%
2| 67.49% | 1-3 | 73.42% | 1-2-4 | 78.96% | 1-2-3-5 | 89.51%
3| 54.85% | 1-4 | 67.41% | 1-2-5 | 81.53% | 1-2-4-5 | 86.41%
41 52.53% | 1-5 | 69.98% | 1-3-4 | 73.15% | 1-3-4-5 | 86.58%
5| 58.10% | 2-3 | 73.32% | 1-3-5 | 77.44% | 2-3-4-5 | 87.29%
2-4 | 71.76% | 1-4-5 | 74.33%
2-5 | 78.62% | 2-3-4 | 77.38%
3-4 | 61.44% | 2-3-5 | 83.74%
3-5 | 67.66% | 2-4-5 | 82.09%
4-5 | 59.10% | 3-4-5 | 72.50%
average 58.82% 69.55% 78.25% 86.81% 95.28%

Table 1: Zone-level prediction accuracy for all intersection combinations

of this number intersections. The combination of observed
intersections that leads to this maximum is the optimal com-
bination. The mean tracking percentage is the mean out of
all these combinations, with the error bars indicating one
standard deviation error. The maximum tracking perfor-
mance quickly increases as more intersections are observed.
For example, to achieve a tracking rate of 90%, only 8 inter-
sections need to be covered. The optimal combination for
8 intersections which leads to the maximum tracking per-
centage was intersections 3, 4, 8, 10, 14, 17, 18 and 21. The
situation when these 8 intersections are observed is shown
in Figure 10, where the black routes and intersections repre-
sent areas where we can fully track a vehicle on a road-level,
and the grey routes and intersections are where the vehicle
can move freely without being tracked.

In this configuration there are a number of isolated grey in-
tersections. These are intersections where the attacker can
infer the vehicle’s location on all roads connecting to the in-
tersection, but the intersection itself is not observed. How-
ever, as the roads extend to the centre of the intersection,
these isolated grey points do not indicate an area where the
vehicle is safe from tracking. Apart from these isolated in-
tersections, we can see that there are 8 road sections where
the vehicle cannot be tracked on a road-level. Zone-level
tracking is still possible however, as an attacker can infer
that when the vehicle enters a grey zone that it remains in
this zone until it is observed again. Moreover, within these
zones the road a vehicle is on might still be inferred by using
the timing attack. However, even without timings there is
still some information that an attacker can gain on unob-
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Figure 9: Road-level tracking percentage for all in-
tersection combinations

served zones. For example, if a vehicle is observed leaving
intersection 17 towards intersection 20, and some time later
is observed entering intersection 18 from the south, then the
vehicle must have taken the grey route between intersection
19 and 20, as there was no other unobserved way to get there.
In fact, the only time when an attacker will not know what
road, or set of connecting roads, the vehicle is on is when
there is a loop in a grey zone, such as between intersections
5, 6 and 7. As all the roads in this loop are approximately
of equal length, a timing attack is not possible, and the road
network actually facilitates a vehicle’s privacy level.

Finally, it may also not be of interest to an attacker to be
able to track a vehicle on the road-level inside the entire
tracking domain. For some areas in the tracking domain,
zone-level knowledge of a vehicle may suffice, whereas in
other areas road-level tracking is required. For example, a
burglar in the residential zone will be interested in the exact
road the security vehicle is on in this zone, but will not care
about where the exact road when it is in the university area,
just that it is in this zone. Thus, an attacker could create
a denser network of sniffing stations where more tracking
information is needed, and for other areas where only zone-
level tracking is necessary, the sniffing stations would only
need to be placed on the zone boundaries.

Figure 10: Optimal coverage for 8 intersections



