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ABSTRACT
Autonomous automated vehicles are the next evolution in
transportation and will improve safety, traffic efficiency and
driving experience. Automated vehicles are equipped with
multiple sensors (LiDAR, radar, camera, etc.) enabling lo-
cal awareness of their surroundings. A fully automated vehi-
cle will unconditionally rely on its sensors readings to make
short-term (i.e. safety-related) and long-term (i.e. planning)
driving decisions. In this context, sensors have to be robust
against intentional or unintentional attacks that aim at low-
ering sensor data quality to disrupt the automation system.
This paper presents remote attacks on camera-based system
and LiDAR using commodity hardware. Results from lab-
oratory experiments show effective blinding, jamming, re-
play, relay, and spoofing attacks. We propose software and
hardware countermeasures that improve sensors resilience
against these attacks.
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1. INTRODUCTION
Autonomous automated vehicles (for the sake of clarity short-
ened to Automated Vehicle (AV) in this paper) are getting
close to market. The SAE J3016 [32] defined different levels
of automation (from zero to five), in which Level 5 means
that all aspects of the dynamic driving task under all road-
way and environmental conditions that can be managed by
a human driver are performed by the automation system,
and this, potentially without driver present in the vehicle.
However, automated vehicles can only work properly with
accurate, reliable and trustworthy sensors. Therefore, AVs
are equipped with a multitude of sensors, using different
physical properties (light, ultrasound, radio frequency, etc.),
Global Navigation Satellite System and accurate road maps.
Successful examples of AVs are the Stanford Shelley [19],

AnnieWAY [34] or the Google Driverless Car [9]. All of
them use Light Imaging Detection and Ranging (LiDAR) to
detect objects and camera for traffic sign recognition and de-
lineation, influencing the overall mission planning. Indeed,
when the LiDAR detects an obstacle on the road, the mission
is re-planned to avoid that object. LiDAR and camera are
the only sensors based on light, capable of 3D representation
and “reading”, which make LiDAR and camera essential for
proper functioning of AVs.

In that context, resilience of AV sensors against attacks is a
key challenge. Indeed, any attack that degrades sensor data
can cause false driving reaction (or at Level 1-2 automa-
tion, fake warning that would distract the driver), leading
potentially to accidents and fatalities [29]. For example, if
camera is attacked and fooled, it can misread a speed limit
sign, leading to unsafe driving conditions for the vehicle’s
passengers. If a LiDAR detects a fake obstacle because of
an attack and triggers an emergency brake, it will seriously
alter traffic efficiency if done at a large scale.

Contributions: In this paper, we present attacks on camera
and LiDAR systems. As we think the most realistic type of
attacker will be outside of the target vehicle, we only con-
sider remote attacks. To assess the feasibility and sophisti-
cation of the attacks, we only use commodity hardware (be-
low 60 US$) and perform black-box attacks. Results show
successful blinding, jamming, replay and spoofing attacks in
different laboratory conditions.

Organization: Section 2 presents the related work in the
domain of automotive security. Section 3 details the sys-
tem attacked. Section 4 describes the attacker model con-
sidered. Section 5 and 6 present attacks on the camera
MobilEye C2-270 and LiDAR ibeo LUX 3, with their respec-
tive countermeasures. Section 7 highlights the limitations of
our experiments, while Section 8 concludes the paper and
presents future work.

2. RELATED WORK
Security analysis of modern automotive systems, especially
in-vehicle networks, is a well-researched topic [16, 22]. Wolf
et al. [36] investigated attacks of automotive bus systems
(LIN, CAN, MOST, FlexRay, Bluetooth) assuming that an
attacker has physical or logical access to the corresponding
vehicle network. Hoppe et al. [12] demonstrated practical



CAN bus attacks where an attacker can manipulate electric
window lifts, warning lights and the airbag control system.
Koscher et al. [18] demonstrated that an attacker who is able
to infiltrate virtually any Electronic Control Unit (ECU) can
leverage this ability to completely circumvent a broad array
of safety-critical systems. They demonstrated the ability
to impose hostile control over a wide range of automotive
functions and completely ignore driver input – including dis-
abling the brakes, selectively braking individual wheels on
demand, and stopping the engine.

Checkoway et al. [6] analyzed the external attack surface of a
modern automobile. They discovered that remote exploita-
tion is feasible via a broad range of attack surfaces (including
mechanics tools, CD players, Bluetooth and cellular radio),
and further, that wireless communications channels allow
long distance vehicle control, location tracking, in-cabin au-
dio exfiltration and theft.

Petit and Shladover [29] listed attack surfaces on automated
and connected vehicles with their respective potential cyber-
attacks. LiDAR and Camera are listed as attack surfaces but
no detail on how to perform attacks were given.

We differentiate from the aforementioned work by perform-
ing real experiments on automated vehicle sensors to check
feasibility and sophistication of remote attacks.

3. SYSTEM MODEL
The automation system of automated vehicles follows three
phases depicted in Figure 1 (i.e. ‘Sense’, ‘Understand’, ‘Act’).
First, the AV senses its surroundings using a set of sensors.
Then, from these raw sensors data, it constructs a repre-
sentation of its environment by fusing them. Finally, the
‘action engine’ decides the appropriate actions to take (e.g.
warn driver, manipulate vehicle controls). In this paper, we
focus on the ‘Sense’ phase because sensor fusion algorithms
cannot fully work properly with poor (or accurate but fake)
raw sensor data [27].

As highlighted in Section 1, camera and LiDAR sensors are
essential for proper functioning of AVs, and were selected for
four reasons. First, existing automated vehicles make exten-
sive use of LiDAR and camera as a source of information for
perception. Secondly, in The Netherlands, the use of sen-
sors such as RADAR, tire pressure sensors and GNSS use
licensed radio frequency and would require a license to per-
form our attacks. Thirdly, camera and LiDAR can be used in
laboratory environment for controlled experiments, without
being integrated in an actual vehicle. Fourthly, attacks on
TPMS [31] and GNSS [4] have already been demonstrated
in real experiments.

3.1 Camera: MobilEye C2-270
A camera is an optical device that can perceive the world as
a digital video signal. It is used in automated vehicles for
lane detection [3], horizon/vanishing point detection [17],
object detection and tracking (vehicles, pedestrians) [7, 15],
traffic sign recognition [24], headlight detection [37], terrain
classification [35]. Most applications share a common task:
extract interesting regions from an image (segmentation),
extract features from these regions and classify them with
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to-infrastructure (V2I) communications. On-board 

maps and associated cloud-based systems offer 

additional inputs via cellular communications.

The outputs from all the sensor blocks are used to 

produce a 3D map of the environment around the 

vehicle. The map includes curbs and lane markers, 

vehicles, pedestrians, street signs and traffic lights, 

the car’s position in a larger map of the area and 

other items that must be recognized for safe driving. 

This information is used by an “action engine,” which 

serves as the decision maker for the entire system. 

The action engine determines what the car needs 

to do and sends activation signals to the lock-step, 

dual-core MCUs controlling the car’s mechanical 

functions and messages to the driver. Other inputs 

come from sensors within the car that monitor the 

state of the driver, in case there is a need for an 

emergency override of the rest of the system.

Finally, it is important to inform the driver 

visually about what the car “understands” of its 

environment. Displays that help the driver visualize 

the car and its environment can warn about road 

conditions and play a role in gaining acceptance of 

new technology. For instance, when drivers can see 

a 3D map that the vehicle uses for its operations, 

they will become more confident about the vehicle’s 

automated control, and begin to rely on it.

Algorithms and system scaling

With its heavy reliance on cameras, radar, lidar and 

other sensors, autonomous vehicle control requires 

a great deal of high-performance processing, which 

by nature is heterogeneous. Low-level sensor 

processing, which handles massive amounts of 

input data, tends to use relatively simple repetitive 

algorithms that operate in parallel. High-level 

Cameras

Radars

Sensor 
Processing

Sensor 
Processing

Sensor 
Fusion

3D Scanning 
Lidars

Ultrasound
sensors

Sensor 
Processing

Sensor 
Processing

Action 
Engine

Vehicle 
Controls
- Brake/acc
- Steering
- etc.

Visualization/Display
Sub-system

Raw data Object parameters
- Time stamp
- Dimensions
- Position/velocity

3D Map Actions
- Do nothing
- Warn
- Complement
- Control

Compressed data

V2V / V2I
comm.

Sense Understand Act

GPS
IMS

“Maps”
a priori info

Driver state

Autonomous vehicle platform: a functional diagram

Figure 1. A functional view of the data flow in an autonomous car’s sensing and control system.
Figure 1: A functional view of the data flow in an au-
tonomous car’s sensing and control system [25].

common classifiers such as AdaBoost classifiers or Support
Vector Machines.

Image quality is the most important parameter of camera-
based systems and the context of moving automated vehi-
cles brings its set of challenges. Indeed, the image quality is
affected by lenses, windshield, vibration, and environmen-
tal conditions (e.g. light, rain, snow), potentially causing
objects to get unnoticed, or increasing processing time for
image correction [20]. Hence, one option is to rely on mul-
tiple cameras. For example, the VisLab’s BRAiVE auto-
mated vehicle has ten cameras installed [5], including ones
in the side mirrors, which are regularly calibrated to mini-
mize the distortion between cameras. Another option is to
use better optical systems to provide sharper pictures, en-
hance performance in low light conditions and reduce glare.
For instance, in [14], multi-band images were used to im-
prove images quality by capturing far-infrared images (700
nm - 1200 nm) together with normal images (400 nm - 700
nm), allowing better distinction of scene objects when light
is limited, such as during the night. However, one should
note that these options require additional space, demand
additional processing capacities, and increase cost, which is
problematic in the highly cost-driven automotive context.

The camera system used in this paper is the MobilEye C2-
270 [23]. It is an Advanced Driver Assistance System (ADAS)
that assists the driver in four tasks: headway monitoring and
warnings, pedestrian collision warning, lane departure warn-
ing, intelligent headlight control (i.e. automatically dim the
headlights in the dark when incoming traffic is detected).
This system is based on one camera, which is installed on
the windshield, under the rear view mirror (see Figure 2). It
is noteworthy that this system is not sold specifically for full
vehicle automation (SAE Level 5), but for function-specific
vehicle automation (SAE Level 1-2-3).

3.2 LiDAR: ibeo LUX 3
For vehicle guidance and road safety, the acquisition of the
geometry of all objects on and around the road is required [30].
Image-based acquisition typically requires good lighting con-
ditions (e.g. day time and weather). It cannot robustly pro-
vide precise object geometry information under poor condi-



Figure 2: MobilEye C2-270 installed (on the windshield)
with the display at the bottom.

tions. Advances in laser scanning technology led to LiDAR
that has proven to be very efficient in acquiring very dense
point clouds (over 800 points per square meter) along road
corridors. The data acquired by laser scanners can be used
to robustly capture the geometry of the road environment
and be the basis for the recognition of a wide range of ob-
jects. A detailed classification of objects, in particular traffic
signs and road lanes will, however, remain largely based on
camera.

LiDAR is a type of range-finding sensor that emits light
pulses and measures the time it takes to reflect off a dis-
tant surface, called a ping. These laser pulses are commonly
bounced off of a spinning mirror thousands of times per sec-
ond, creating a scan of laser pulses. When the original pulse
is received more than once, these additional pulses received
are called echoes. Echoes are useful to detect objects under
almost any weather condition.

LiDAR is commonly used for Adaptive Cruise Control (ACC),
Collision Avoidance System (CAS) [10] and object recogni-
tion. When a LiDAR sensor is mounted on a rotatable mir-
ror, it can be used to provide vision in two or three dimen-
sional view. LiDAR provides a spatial resolution of 10 cm,
which enables accurate scanning that can classify pedestri-
ans and cars [21]. One way to classify objects, is by using
a depth map. For instance, a pedestrian will appear as a
small object on the depth map, while a car will appear as a
much bigger object. Combined with speed information and
tracking algorithms, objects can be classified and tracked.

The LiDAR tested in this paper is the ibeo LUX 3 [13].
It is a four-layer laser-based ranging system, mounted on a
rotating head to provide view up to 110◦. The four layers
refer to the number of scanning rays. Each layer is slightly
tilted with respect to the road, so the LiDAR can oper-
ate on uneven roads (e.g. bumpy roads, hills, etc.). Even
though it is a multi-layer LiDAR, it cannot provide a three-
dimensional view, but only four layers of two-dimensional
planes. The maximal range is up to 200 meters, depend-
ing on the weather conditions and it can detect up to three
echoes. The minimal constant angular resolution between
pulse is 0.25◦ at 12.5Hz or 25Hz, and 0.5◦ at 50Hz. For in-
stance, at 20 m and 50Hz, the gap between each pulse would
be 0.29 m wide.

The ibeo LUX 3 contains an embedded object tracking sys-
tem that uses a Kalman Filter to track the following objects:
car, truck, bike, pedestrian, unknown small, unknown big,
non classified. The maximum number of objects that can
be tracked is 65. Each object, when detected, is augmented
with an object identification number for tracking purposes.

4. ATTACKER MODEL
Following the attacker model described in [28], we consider
an external attacker that targets sensor data acquisition. In-
deed, as seen in Section 3, AVs strongly rely on accurate sen-
sor data. Thus, in this paper, we focus on attacks that aim
at degrading sensors data quality. The attacker considered
has limited resources (time to perform the attack—attack
should be brief—and money) with the intention of actively
(i.e. will send signal) disrupting components undetectably
(i.e. no damage to device, leave no trace, not detectable by
law enforcement) and externally (i.e. remotely). The type
of attack should require low level of sophistication. Hence,
only commodity hardware are used.

In this paper, we consider the following three attack sce-
narios. Although more scenarios are possible, the scenarios
below have in common that attacks can be mounted while
the target vehicle is driving at high speed, as opposed to low-
speed activities such as parking. The motives for the attacks
are to either cause as much damage as possible, such as pro-
voking a car accident, or to force a car into its minimal risk
condition (i.e. stopping safely on the shoulder lane [32]), or
to simply disrupt road traffic.

Front/rear/side attack In a front/rear/side attack, the
attacker installs the required hardware to mount an
attack in another vehicle. Depending on the hardware,
this can be installed without anyone noticing. The
vehicle is then used to drive in front of (or behind
of, or next to) the target vehicle. When positioned,
the attack is executed once or multiple times. The
advantage of this attack scenario is that it allows an
attacker to keep the same distance to the target AV
for a longer period.

Roadside attack A roadside attack is mounted stationary
in objects on the side of the road, such as the guard
rail. The attack is not limited to one installation point,
but can be spread over multiple installation points,
potentially connected to each other (e.g. for replay or
relay attacks).

Evil mechanic attack The ‘Evil Mechanic’ [28] has short-
term physical access to the vehicle, e.g. when it is
parked or left for maintenance. For instance, an at-
tacker can mount a jamming device on a (carrier) ve-
hicle that jams other vehicles unknowingly.

The devices-under-test are considered black-boxes, of which
the hardware layer is attacked. Even though the technical
specifications and datasheets are available, the exact inter-
nal workings are not documented. No internal signals will be
used and no detailed information on the hardware is assumed
to be known. With respect to the attacker model, this is a
valid assumption. Because of the limited money and limited



time, the attacker cannot reverse engineer all existing sys-
tems, and can only apply general techniques. The attacker
is aware of what the hardware is supposed to do, but is not
aware of how it works internally.

5. ATTACKS ON CAMERA
A camera can be used to detect traffic signs, delineation,
or objects, it can be attacked in multiple ways. Detection
of traffic signs can be fooled by placing (fake) traffic signs
at improper locations. It is also possible to ‘hide’ traffic
signs by surrounding them with other shapes/colors to con-
fuse shape/color detection algorithms [11]. Lane detection
can be confused by painting additional lines on the road,
or by using different colors (this is already the case at road
construction sites). Object tracking is usually limited be-
cause of computational power or resolution, so it would be
easy to cause a denial of service by presenting too many
objects to track. Recently, it has been demonstrated that
deep neural networks (DNNs) (which achieve state-of-the-
art performance on visual classification problems, and are
used in camera software) can be easily fooled by completely
unrecognizable images to humans, but that DNNs believe to
be recognizable objects with 99.99% confidence [26].

Attacks on camera can also target its features such as auto-
matic exposure controls, auto-focus or light sensitivity. In-
deed, cameras normalize lighting conditions via an iterative
process. When light is directed at the image sensor, it will
tune down its sensitivity and exposure to improve the image
quality according to predefined settings. This can lead to
undesired effects, for instance when the auto exposure tunes
down due to headlights at night. This could hide informa-
tion in the background, such as traffic signs, road edges or
pedestrians. The Google Driverless Car is susceptible to this
problem [8].

In Sections 5.1 and 5.2, we demonstrate attacks that aim
to hide objects and fool auto-controls. The attacker will
use commodity hardware such as a laser pointer or cheap
LEDs. To assess the effectiveness of the attack we use the
tonal distribution, which represents the distribution of the
number of pixels per grayscale value, with a total of 256
bins. All images presented here are 320 x 240 pixels, and all
tonal distributions have the same domain and range.

5.1 Blinding the camera
The goal of this attack is to blind the camera fully or par-
tially, by emitting light into the camera in order to hide ob-
jects. Failing to detect objects such as speed limit signage
or traffic light can jeopardize passenger’s safety.

5.1.1 Description
Blinding occurs when the camera is not able to tune the
auto exposure or gain down anymore. In this case, the
light cannot be dimmed, which results in an overexposed
image. Three variables have direct impact on the effective-
ness of the blinding attack. The first variable is the en-
vironmental light. If the camera is positioned in a bright
environment, the auto controls are adapted for that partic-
ular environment, so more light would be needed to raise
above the environmental light to reach a blind state. The
second variable is the light source used to blind (i.e. wave-
length), and the third variable is the distance between the
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Figure 3: Setup of blinding experiment
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Figure 4: Blinding MobilEye C2-270 with 650 nm laser

light source and the camera. Therefore, experiments were
done in bright (250 lx) and dark (0 lx) environments, with
different light sources at multiple distances (50 cm, 100 cm,
150 cm and 200cm). One should note that increasing the dis-
tance would require to increase the number of light sources.
The amount of light sources can be approximated with the
‘Inverse-square Law’, which shows that the number of light
sources required to have the same power grows exponentially
with the distance.

The results from a near-infrared sensitivity test (left out here
for space reason) show that Ledsee 650 nm diode point laser
is the most effective, followed by the Osram SFH4550 IR 850
nm LED and the Ledsee IR 940 nm 5x5 LED matrix. Fig-
ure 3 depicts the experimental setup of the blinding attack,
where B is the camera, A the light source (positioned at
different distances) and C the background (a checkerboard
pattern).

5.1.2 Results
For space reason, only results from the most effective light
source are discussed here1. Figure 4 shows the result of
blinding by 650 nm laser. In Figure 4a the laser is off and
the camera sees the background. In Figure 4b, the laser
is on and the background is not visible anymore, causing
a partial blinding. Indeed, Figure 4c shows a clear shift in
tonal distribution, as denoted by the red peak on the right
(blue corresponds to the off-state, red to the on-state).

Table 1 presents the correlation between the off-state and
on-state tonal distributions per light source. A high corre-
lation value indicates more similarity between two images.
Therefore, lower values are more interesting because indi-
cate change in lighting condition, and thus, potential blind-
ing. The correlation values between 0%-50% and 0%-100%
power are presented to see if the amount of power influences

1All results are available here: https://mega.nz/#F!
DMglBZ4J!yNEq99B-kvYeUK_Rhb7dtA



the result.

Light source Visible Setting Distance CV1 CV2
365 nm LED spot yes dark 50 cm 0.437 0.084
365 nm LED spot yes dark 100 cm 0.860 0.524
365 nm LED spot yes dark 150 cm 0.993 0.858
365 nm LED spot yes dark 200 cm 0.691 0.758
365 nm LED spot yes light 50 cm 0.992 0.985
365 nm LED spot yes light 100 cm 0.999 0.998
365 nm LED spot yes light 150 cm 0.999 0.998
365 nm LED spot yes light 200 cm 0.998 0.996
White LED spot yes dark 50 cm 0.098 0.109
White LED spot yes dark 100 cm 0.120 0.118
White LED spot yes dark 150 cm 0.280 0.230
White LED spot yes dark 200 cm 0.748 0.323
White LED spot yes light 50 cm 0.492 0.400
White LED spot yes light 100 cm 0.901 0.777
White LED spot yes light 150 cm 0.946 0.941
White LED spot yes light 200 cm 0.924 0.927
850 nm LED spot no dark 50 cm 0.173 0.165
850 nm LED spot no dark 100 cm 0.716 0.779
850 nm LED spot no dark 150 cm 0.966 0.796
850 nm LED spot no dark 200 cm 0.971 0.911
850 nm LED spot no light 50 cm 0.989 0.977
850 nm LED spot no light 100 cm 0.996 0.997
850 nm LED spot no light 150 cm 0.997 0.996
850 nm LED spot no light 200 cm 0.996 0.997

940 nm 5x5 LED matrix no dark 50 cm 0.161 0.613
940 nm 5x5 LED matrix no dark 100 cm 0.727 0.096
940 nm 5x5 LED matrix no dark 150 cm 0.970 0.086
940 nm 5x5 LED matrix no dark 200 cm 0.994 0.069
940 nm 5x5 LED matrix no light 50 cm 0.985 0.832
940 nm 5x5 LED matrix no light 100 cm 0.998 0.951
940 nm 5x5 LED matrix no light 150 cm 0.994 0.969
940 nm 5x5 LED matrix no light 200 cm 0.999 0.986

650 nm laser yes n/a n/a n/a 0.152

Table 1: Correlation between 0%-50% (CV1) and 0%-100%
(CV2) power observations. Lower correlation values indicate
less similarity between observations. Lower is better.

The results show that the correlation value increases with
the distance, which was expected as less light reach the cam-
era sensor at larger distances. The environmental light has
influence on the results, as the correlation values in light
conditions are all in the range of 0.95 - 1.0, except for the
white LED spot. So, in light conditions, the most effective
light sources are the 650 nm laser and the White LED spot.
One should note that for the 650 nm laser, n/a means that
environmental light, distance and power do not influence the
blinding effectiveness. In dark conditions, the IR 940 nm 5x5
LED Matrix has the most influence (and is the cheapest of
all the light sources used in this experiment), followed by
the White LED spot.

Although this experiment did not succeed to fully blind the
image using near-infrared light sources, these light sources
can be used to blind objects. For instance, by mounting
several LEDs on a vehicle that should normally be rec-
ognized, the MobilEye C2-270 cannot recognize them any-
more. In general, blinding a camera will work best from
a front/rear/side attack, since the light sources should be
positioned carefully to emit the most light into the image
sensor (see Section 7).

5.2 Confusing the auto controls
Compared to the blinding attack that aims to max-out the
camera auto controls, this experiment focuses on influenc-
ing the auto controls in the period before the image recov-
ers and stabilizes. Hence, this attack is harder to detect
by the system because consists of burst of light instead of

a constant beam. The longer it takes to stabilize to the
new environmental conditions, the longer the car is vulner-
able to objects it cannot detect. This attack distinguishes
itself from situations like driving out of a tunnel, because
in that case, the camera can adapt more gradually to the
new conditions. Confusing the auto controls is limited to
front/rear/side attack, because it assumes that the attacker
continuously switches the light on and off.

5.2.1 Description
The MobilEye C2-270 camera sensor is equipped with auto
exposure control and auto gain control. It is undocumented
if both auto controls are enabled, but for optimal image qual-
ity in darker environments, it is presumed to be the case.
Auto exposure control will determine the shutter speed for
each frame, while auto gain control can amplify the elec-
tron charges from the image sensor after exposing it to the
light. Both controls measure the current scene luminosity
and desired output luminosity by accumulating a histogram
of pixel values. This value is then used to calculate the de-
sired exposure and gain values. Both controls need some
time before being stable, because of their iterative control
process. On the other hand, having a too fast loop control
would make the image very unstable in terms of brightness.

The experimental setup is the same as for the blinding at-
tack, but with a black curtain as background to make sure
the MobilEye C2-270 is as sensitive to the light source as
possible. All of the light sources of the previous experiment
were tested. For each test, a video was recorded. Each
test starts in a ‘starting condition’. Then, the light source is
turned on to full power in one shot, and the video is stopped
when the camera has adapted to the new light source. To
analyze each video, a tonal distribution is created for each
frame, after which, each consecutive tonal distribution is
correlated with the first one (the ‘starting condition’). The
time between the first drop in correlation, and the first rise
(if applicable) is measured, and denotes the vulnerable pe-
riod (e.g. blinding time).

5.2.2 Results
For space reason, only results from the most effective light
source are discussed here2. Figure 5 shows the result of the
experiment with the 940 nm 5x5 LED matrix in dark envi-
ronment at 50 cm. Figure 5a shows the initial state of the
camera facing the LED matrix (off). When the LED matrix
is turned on (Figure 5b), the image is almost fully blinded.
This is confirmed by Figure 5c, in which the two peaks on
the right (the green (resp. red) corresponds to 50% power
(resp. 100%)) demonstrate that the light source affects the
amount of black tones in the image. Figure 5d shows the
time to recover from the attack. The left vertical dashed line
(green) represents when the LED matrix was turned on. We
can see a drop in correlation from 1 to -0.012. The right ver-
tical dashed line (red) represents when the LED matrix was
turned off. During the attack window (1 to 6 seconds) the
correlation drops to zero. When the LED matrix is turned
off, the camera recovers to a normal state in 0.3 second. In
total, the 940 nm 5x5 LED matrix blinded the camera for
5.3 seconds.

2All results are available here: https://mega.nz/#F!
DMglBZ4J!yNEq99B-kvYeUK_Rhb7dtA



(a) Light source off (b) Light source on

(c) Tonal distribution
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Figure 5: Auto-Exposure MobilEye C2-270 with 940 nm 5x5
LED matrix

The results of all light sources tested are presented in Ta-
ble 2. The correlation score is the lowest score calculated
over all frames. A high value indicates more similarity be-
tween two images, whereas a low value indicates less sim-
ilarity. Therefore, lower values are more interesting, and
indicate how much the image was blinded.

Compared to results of Section 5.1, the environmental light
has less influence on the outcome of the attack. Indeed,
blinding time and MCV are similar in dark and light con-
ditions. Likewise distance does not affect significantly the
attack. Results for the 650 nm laser show that the cam-
era does not recover from the intense beam, therefore the
blinding time is infinity. The 940 nm 5x5 LED matrix and
850 nm LED spot are also very effective and provide blind-
ing times greater than 5 seconds and low correlation values.
This attack demonstrates that MobilEye C2-270 auto con-
trols can be confused, and that in some case the camera
never recovers from it.

5.3 Countermeasures
Countermeasures exist to protect cameras from being tam-
pered with. There is a trade-off between protecting the cam-
era from tampering, sensitivity, image quality, camera size
and price. Most of the countermeasures require the camera
to be modified. This not only increases the cost, but also the
dimensions of the device, which can be problematic for the
cost-driven and space-restricted automotive environment.

5.3.1 Redundancy
By introducing multiple cameras that perceive the same im-
age (or at least overlap), the attacker has to put more effort
into the attack to blind all cameras at the same time. Ex-
periments have shown that using a 650 nm laser (5 mW) is
the most effective way to temporary blind a camera. Unfor-
tunately, due to the small beam width, this attack is only
limited to a single image sensor at a time. At a distance of
50 cm, the width of a focused beam was measured at ap-

Light source Visible Setting Distance Blinding Time MCV
365 nm LED spot yes dark 50 cm 0.67 0.201
365 nm LED spot yes dark 100 cm 0.63 0.706
365 nm LED spot yes dark 150 cm — 0.969
365 nm LED spot yes dark 200 cm — 0.981
365 nm LED spot yes light 50 cm 0.97 0.504
365 nm LED spot yes light 100 cm — 0.921
365 nm LED spot yes light 150 cm — 0.945
365 nm LED spot yes light 200 cm — 0.939
White LED spot yes dark 50 cm 1.67 0.116
White LED spot yes dark 100 cm 1.33 0.409
White LED spot yes dark 150 cm 0.43 0.470
White LED spot yes dark 200 cm 0.77 0.551
White LED spot yes light 50 cm 0.37 0.076
White LED spot yes light 100 cm 0.40 0.079
White LED spot yes light 150 cm 0.73 0.367
White LED spot yes light 200 cm 0.37 0.474

650 nm laser yes n/a 50 cm ∞ -0.100
650 nm laser yes n/a 100 cm ∞ -0.011

850 nm LED spot no dark 50 cm 4.67 -0.017
850 nm LED spot no dark 100 cm 2.97 -0.001
850 nm LED spot no dark 150 cm — -0.035
850 nm LED spot no dark 200 cm 4.30 -0.064
850 nm LED spot no light 50 cm 5.50 -0.033
850 nm LED spot no light 100 cm 1.67 -0.021
850 nm LED spot no light 150 cm 2.67 0.0267
850 nm LED spot no light 200 cm 5.00 0.1229

940 nm 5x5 LED matrix no dark 50 cm 5.30 -0.012
940 nm 5x5 LED matrix no dark 100 cm 5.47 -0.014
940 nm 5x5 LED matrix no dark 150 cm 1.67 -0.017
940 nm 5x5 LED matrix no dark 200 cm 4.67 -0.017
940 nm 5x5 LED matrix no light 50 cm 6.00 -0.016
940 nm 5x5 LED matrix no light 100 cm 3.17 -0.041
940 nm 5x5 LED matrix no light 150 cm 4.33 -0.022
940 nm 5x5 LED matrix no light 200 cm 1.33 -0.027

Table 2: Blinding times (in seconds) and the minimal cor-
relation values (MCV).

proximately 1.5 mm. The size of the MobilEye C2-270 lens
was measured at approximately 5 mm. Introducing extra
cameras may not protect from military grade weapons such
as a ‘Dazzler’ [1]. Indeed, the width of the Dazzler’s beam
can be configured up to 12 cm, at the expense of output
power on the same area and range. This makes it a lot eas-
ier for an adversary to aim at a camera sensor. If multiple
cameras are used to complement each other, then it is also
possible that the ‘Dazzler’ will hit several camera sensors at
the same time.

However, redundancy requires more space to fit the cameras
and cameras need to be carefully calibrated so the overlap-
ping image is not misaligned. Software should blend the sep-
arate images together, which is rather trivial as long as cam-
eras have a static position with respect to each other. Other
challenges of this countermeasure include synchronized cap-
turing and maintaining the same exposure [2].

5.3.2 Optics and materials
Integrating a removable near-infrared-cut filter, a technique
that is available on security cameras, can filter near-infrared
light on request. The filter can be applied by switching an
electromagnet. During day time, the filter is applied to yield
a better image. During night time the filter is removed to
make use of infrared light for night vision. When the filter
is applied, it will also block infrared light sources, hence this
countermeasure is only effective during day time.

To improve this countermeasure, the filter could also be ap-
plied when the camera decides it is needed, for instance when
it is jammed (see next countermeasure), or when the auto
controls cannot be optimized for the bright lighting condi-
tions anymore. In this case, it is assumed that jamming the
sensor is already in progress. This may introduce a new at-



tack vector, as an attacker may repeatedly attack the auto
controls (as demonstrated in Section 5.2) to let the camera
apply the filter or remove it. Depending on the quality of the
near-infrared-cut filter, the camera may thus be damaged.

Another option is to use photochromic lenses. These types
of lenses can change color to filter out specific types of light.
An example includes glasses with darkening lenses in sun-
light. The type of lenses (or coating on the lenses) determine
the type of light it filter. For example, vanadium-doped zinc
telluride is a material that can filter light with a wavelength
of 630 nm - 1300 nm [38]. High-intensity beams will make
the material more opaque, therefore filter more. The advan-
tage of these type of materials is that they do not affect the
image in low-light conditions.

6. ATTACKS ON LIDAR
Since LiDAR is the preferred technique in speed measure-
ment devices, jammers are widely available on the (black)
market. However, a LiDAR can only see things that are re-
flected by the signal. If the signal does not return (due to
absorption, transparent objects or range limits), it will as-
sume there is ‘nothing’. For a 360◦ view, most of the world
will be classified as ‘nothing’.

Reflective objects can confuse a laser beam as reflected ob-
jects can appear in the field-of-vision while they should not,
which is major problem for Collision Avoidance Systems.
For instance, objects located behind can be detected as in
front. Also, some objects on the road are reflective by de-
sign. Lane markings reflect some of the signal, so it will be
visible in the perceived image.

Because LiDAR plays a major role in automated vehicle’s
perception and simply uses light pulses, it is an obvious at-
tack surface. The main goal of attack on LiDAR is to gen-
erate noise, fake echoes, or fake objects. In this Section, we
assess the feasibility and sophistication of attacks on LiDAR.
We performed replay, relay, jamming and spoofing attacks
on LiDAR, which were all successful. However, for space
reason and because they are respectively an extension of re-
play and jamming attacks, only the relay and the spoofing
attacks are presented in this paper3.

6.1 Relaying the signal
This attack is an extension of replay attack that aims at re-
laying the original signal sent from the target vehicle LiDAR
from another position to create fake echoes, and eventually,
make real objects appear closer or further than their actual
locations.

6.1.1 Description
To perform the relay attack, an attacker needs two transceivers
(B and C in Figure 6). As the ibeo LUX 3 uses light with a
wavelength of 905 nm, transceiver B is a photodetector sensi-
tive to this wavelength (Osram SFH-213, costing 0.65 US$).
The output of B is a voltage signal that corresponds to the
intensity of the pulse sent by the LiDAR (A). An oscillo-
scope is attached to B to visualize the signal. The output of

3Results and videos of attacks are available here: https:
//mega.nz/#F!DMglBZ4J!yNEq99B-kvYeUK_Rhb7dtA

Figure 6: Setup of a LiDAR relay attack

B is sent to C, which uses a laser (Osram SPL-PL90, costing
43.25 US$) to emit a pulse in return.

In Figure 6, both transceivers are positioned one meter away
from each other, but they do not have to be at the same
physical position for a relay attack. The relay attack also
performs well if the transceivers are positioned behind the
ibeo LUX 3. Indeed, since the LiDAR signals reflect, some
of the reflected light that travels back will also travel past
the ibeo LUX 3. If a transceiver receives it over there, the
same signals can be retransmitted from another location.
Therefore, a direct line of sight is not required to perform
a relay attack with these transceivers. A relay attack is
most likely to happen from the roadside, where an attacker
would receive LiDAR signals from vehicles and relay them
to another vehicle located at a different location.

6.1.2 Results
Figure 7 shows the impact of the relay attack on the Li-
DAR perception. Before the attack, the LiDAR only detects
the wall located at one meter in front of it (represented by
the small yellow horizontal line at the center of the bottom
of Figure 7). During the relay attack, the LiDAR receives
echoes from objects at 20 and 50 meters away (circled in
Figure 7). Because the automation system detects obstacles
further away, these echoes can affect the mission planning
(see Section 7.4 for detailed discussion). This attack shows
that pulses are not encoded for the LiDAR that emits them,
and that pulses can be replayed and relayed to generate fake
echoes.

6.2 Spoofing the signal
The relay attack demonstrated that fake echoes can be easily
injected. In this Section, we extend the attack by creating
fake objects. This experiment will use the original signal as
a trigger point to actively spoof the ibeo LUX 3, with the
intention to re(p)lay objects and control their position.

6.2.1 Description
Light travels with a speed of approximately 3 · 105 km/s, or
1 meter every 3.33 ns. With a maximum range of 200 meters



Figure 7: Result of LiDAR relay attack. Light pulses are
received from the left, and relayed from the right.
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Figure 8: LiDAR attack window. The arrows indicate what
would happen if the attacker’s pulse hits the LiDAR at that
time.

for the ibeo LUX 3, the signal travels this distance back and
forth in approximately 1.33 µs. This means that the LiDAR
should listen for at least 1.33 µs for incoming reflections. To
successfully inject signals into the LiDAR, the counterfeit
signal should arrive within this window. The earlier the
LiDAR receives the signal, the closer it will be to the LiDAR.
Therefore, if the attacker delays the original signal before it
relays it, it can control the position of the objects. Do note
that if, for instance, the attacker is at 200 meters, the attack
window is smaller since the first 200 meters have already
been travelled by the light pulses.

Figure 8 relates timing to the success of spoofing attacks.
In the attack demonstrated here, the counterfeit pulse is
received by the LiDAR after the first echo is received (the
original pulse). This makes a point appear further away,
as the LiDAR thinks it travelled a longer distance. If the
counterfeit pulse is received in the silent window (gap), i.e.
after the 1.33 µs attack window, it will not be noticed. This
is why the attacker needs to know when to generate pulses.

Figure 9 depicts the experimental setup. The ibeo LUX 3 is
represented by A, the transceiver by B and the control logic
by P1 and P2 (not shown in actual setup). A counterfeit
signal is generated via external control logic, consisting of
two pulse generators. The output of B is connected to the
trigger input of the HP 8011A pulse generator (P1). As soon
as P1 is triggered, it will delay the output. The output of
P1 is connected to the input of the second pulse generator,
a Philips PM 5715 (P2). A fixed number of square-wave
pulses can be generated as soon as P2 is triggered. The
output of P2 is then sent back to the transceiver. In this

A B

P2P1

(a) Schematic (b) Actual setup

Figure 9: Setup of a LiDAR spoofing attack
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Figure 10: The delay, number of copies and number of pulses
are the parameters used to create counterfeit signal.

experiment, the attacker aims at injecting copies of the real
wall located at one meter, and this, at different distances.

The delay, number of pulses, number of copies, pulse width
and pulse period are the variables that can be controlled.
Figure 10 shows how the trigger delay and the number of
copies affect the counterfeit signal. As soon as one pulse
triggers the control logic, a similar signal is generated of
a fixed number of pulses. By tuning the pulse width and
pulse period using an oscilloscope, the counterfeit signal can
resemble the original one.

6.2.2 Results
Figure 11 shows the result of the spoofing attack on the Li-
DAR representation. Figure 11a shows points that resemble
a copy of the wall detected at approximately 50 meters. The
LiDAR considers these points at second echoes. By tuning
the delay, it is possible to make the wall appear closer or
further away, until the signal falls outside of the attack win-
dow.

P1 can be configured to output multiple pulses when it is
triggered. Therefore, it is possible to inject multiple coun-
terfeit pulses in a sequence. Figure 11b shows the result of
the spoofing attack, where multiple copies of the wall were
generated at regular spaced intervals. These fake walls are
detected at 40, 50 and 70 meters away from the LiDAR.
The first copy of the wall is considered as second echoes, the
others are a mix of second and third echoes, until it fades
out.

As mentioned earlier, the ibeo LUX 3 can classify and track
objects. When the “tracking box” is connected to the Li-



(a) spoofing of one copy of the
wall

(b) spoofing of multiple copies of
the wall

Figure 11: Results of a LiDAR spoofing attack

(a) t = 10.37 sec,
ID = 21

(b) t = 10.59 sec,
ID = 65

(c) t = 10.83 sec,
ID = 242

Figure 12: Tracking the second wall over time. A new color
represents a new object. For clarity, the tracking boxes for
the other objects are not shown.

DAR, the ibeo LUX 3 allocates object numbers to detected
objects. We re-run the same experiment as in Figure 11b
with tracking enabled. The ibeo LUX 3 classified the walls
as ‘Unknown big’ (and sometimes even as ‘Car’). Figure 12
shows three consecutive snapshot of the LiDAR representa-
tion. We can see that the second counterfeit wall is detected
and classified as ‘Unknown big’ (UB) and that its object
number changed. In less than 0.46 second, the second wall
is identified as three new objects. This indicates that the
ibeo LUX 3 classifies the same spoofed object as a new ob-
ject, therefore is unable to track an object over time. This
attack proves that fake objects can be spoofed, classified and
(tentatively) tracked by the LiDAR.

6.3 Countermeasures
The countermeasures below can be implemented in software
(except redundancy) to prevent or detect the attacks demon-
strated in this paper. A modification of the sensor hardware
is not necessary, but the firmware can be changed to imple-
ment some of the countermeasures proposed (at the expense
of range or accuracy). However, no information can be pro-
vided to indicate if the countermeasures are already imple-
mented in the object tracking software of ibeo LUX 3, as
the sensor was only tested on raw data level.

6.3.1 Redundancy
The experiments have shown that it is possible to relay and
spoof on the ibeo LUX 3. According to [21, 33], it is possible
to use different types of wavelengths for LiDAR vision4. Al-
though some wavelengths have drawbacks in terms of range,
combining multiple wavelength LiDAR makes it harder for
the attacker to attack both signals at the same time. Accord-
ing to [33], the costs for the required hardware will exceed

4Do note that the wavelengths should not overlap. How-
ever, using a 850 nm LiDAR will still influence the 905 nm
LiDAR.

the budget for the attacker model considered in this paper.

Another way of adding redundancy would be to use V2V
communication5. If an attacker mounts a front/side/rear or
roadside attack, it is likely to only affect a single vehicle.
If other AVs share their measurements, the attacked AV
could compare its measurements with what other vehicles
observe in order to detect inconsistencies. This countermea-
sure opens up new attack surfaces as neighboring vehicles
may intentionally share incorrect data.

6.3.2 Random probing
As shown in Section 3.2, the pulse is repeated at a fixed
interval. This interval depends on the scanning speed, and
thus, the rotation of the mirror inside the ibeo LUX 3. Fur-
thermore, the attacker needs to synchronize on this interval,
so it knows exactly when to fire a pulse back. By varying
this period non-predictably, it will be harder for the attacker
to synchronize on the original signal. This countermeasure
can be problematic for rotating LiDAR because they require
a constant rotation speed and need to know exactly at which
angle they fired a pulse.

Another option is to (non-)predictably skip certain pulses.
This countermeasure only requires a modification of the soft-
ware that controls the laser emission. When a pulse is
skipped, it introduces an effect that is similar to varying
the scan speed. If the LiDAR skips a pulse, it can still lis-
ten for incoming pulses. If it notices a response, this may
indicate that an attack is going on. It depends on the appli-
cation whether this is acceptable or not. However, at a scan
frequency of 50Hz, missing a few pulses will not have much
effect on the resolution, especially at close range.

6.3.3 Probe multiple times
This countermeasure is only effective against random jam-
ming. If an attacker is not in sync with the pulse signal
generated by the LiDAR, counterfeit pulses will appear at
random intervals in the attack window. For instance, if the
LiDAR measures three times at a the same position and it
measures three different distances (e.g. 40 m, 10 m, 150 m),
this measurement is likely to be invalid.

Probing multiple times does introduce three new problems.
First, it decreases the scan frequency. Probing four times
will effectively convert a 50Hz device LiDAR into a 12.5Hz
device. Second, the measurements should be corrected, to
compensate for any movement of the vehicle in between the
measurements. This should not be a major limitation, since
most modern vehicles advertise the speed of the vehicle via
the CAN bus. Lastly, the software should detect invalid
measurements. Removing outliers will have a small impact
on resolution, but at close range, this may not be a problem.
Another option can be to average the measurements using a
rolling average or Kalman Filter. This countermeasure can
be implemented in software.

6.3.4 Shorten the pulse period
In Section 6.2 it was calculated that the ping period is ap-
proximately 1.33 µs. This gives the attacker an attack win-

5This countermeasure will also work for camera-based sys-
tem.



dow of less than 1.33 µs. By shortening the pulse period,
we reduce the attack window. One should note that lower-
ing the pulse period will also lower the maximum range. By
halving the period to 0.66 µs, the range of the ibeo LUX 3
will decrease to 100 meters.

The effectiveness of this countermeasure depends on the type
of attack. For instance, in a front/rear/side attack, this
countermeasure is less effective, as the attacker is allowed
to constantly move around the target vehicle (e.g. have a
jammer installed in the bumper and drive in front of the
target). For a roadside attack, this countermeasure is more
effective because the maximum range decreases.

7. DISCUSSION
In this Section we discuss the limitations of the attacks pre-
sented in this paper and their impact on the application
layer.

7.1 Limitation 1: Generating Closer Objects
The relay attack in Section 6.1 directly connected the out-
put of one transceiver to the input of the other. Even if
no additional delay was introduced, the closest we could in-
ject fake objects was at 20 meters from the LiDAR, while
the original object was located at 1 meter. Experiments of
Section 6.2 suffer from the same issue. For instance, in Fig-
ure 11b it was only possible to inject a copy of the wall at
approximately 40 meters. At low speed, an AV (or even a
human) would have enough time to react. However, at high
speed this is major problem as it takes approximately one
seconds to travel 40 meters, leaving almost no time to brake
or maneuver. We noticed that cable length and transceiver
circuits caused an intrinsic delay of 64 ns, corresponding to
the 20 meters.

7.2 Limitation 2: Attack Range
Regarding the LiDAR experiments, no range tests have been
performed. The laser part of the transceiver has a range up
to 100 meters with a viewing angle of 9◦. Therefore, it will
be easy for an attacker to emit a laser beam at a large dis-
tance on a moving vehicle, which is the only part required
for a jamming attack. But for relay, and in particular spoof-
ing attacks, receiving the original signal is more important.
Larger distances between the attacker and its target will
increase the gap between LiDAR pulses. At a distance of
100 meters, the gap between two sequential LiDAR pulses
is approximately 1.47 meters. Since a photodetector has an
aperture of only 5 mm, it is very likely that pulses will not
be detected. Thus, multiple photodetectors will be required,
increasing the cost of the attack. Moreover, as explained in
Section 6.2, the distance between the attacker and its target
directly impact the attack window. So, the attacker might
not have an interest in being too far from the target AV.

7.3 Limitation 3: Indoor Experiments
All attacks presented here were performed in laboratory con-
ditions. Performing such attacks outdoor, on moving vehi-
cles, is more challenging and might require additional hard-
ware. The main issue of attacking camera is aim. Indeed,
the attacker has to accurately target the camera sensor,
which can be challenging in moving condition (front/rear/side
or roadside). For example, the 650 nm laser (which has

(a) Laser off, normal behavior of
MobilEye C2-270

(b) Laser on, MobilEye C2-270
does not detect vehicle ahead

Figure 13: MobilEye live blinding experiment.

the most influence on the MobilEye C2-270) has a beam
of 1.5 mm that makes aiming very challenging for human.
Therefore, an attacker could use an Arduino object tracking
device that can follow object at high speed. For the Li-
DAR the main issue is synchronization to the pulse period.
Especially, this has to be done quickly when the attack is
performed from the roadside. However, we would like to
stress that indoor experiments do not lessen the validity of
our experimental results. We expect similar results in out-
door experiments.

7.4 Impact on Application Layer
The attacks demonstrated in this paper are directed at the
hardware layer (i.e. ‘Sense’ or raw data level) and demon-
strated that the ibeo LUX 3 and the MobilEye C2-270 did
not detect malicious input. This may be completely dif-
ferent for other systems and implementations available on
the market, but it is believed that fully automated vehicles
that currently exist will also fail to detect malicious input.
Therefore, we go beyond the hardware layer and discuss the
impact of the attacks on the application layer (i.e. ‘Under-
stand’ and ‘Act’ in Figure 1). The application layer involves
sensor processing, sensor fusion and decision upon driving
actions. The processing steps for the MobilEye C2-270 and
the ibeo LUX 3 are not documented. However, it is inter-
esting to see how the application layer processes malicious
input and if it can detect it.

In the first experiment, an iPad is put in front of the MobilEye
C2-270 camera. The objective is to show that the CAS fails
to work when the camera is blinded. The MobilEye C2-270
is connected to a simulator that is setup to report a speed
of 130 km/h6. A video is played with footage from a dash-
board camera, as if the MobilEye C2-270 was installed in an
actual vehicle. First, Figure 13a shows what would happen
without any tampering, then the laser pointer is turned on,
with the intention to blind the camera. Figure 13b shows
that the display is blank, meaning that the vehicle ahead is
not detected.

The ibeo LUX 3 contains an embedded tracking system. The
tracking system can group points and classify them as a car,
truck, bike, pedestrian or unidentified object. It can also
track objects over time. This allows the ibeo LUX 3 to de-
termine an object’s direction. Section 6 demonstrated that
the LiDAR is sensitive to counterfeit pulses generated by an
adversary. Furthermore, it was possible to control the dis-
tance where objects appeared, by varying the delay of the
trigger signal of the second pulse generator. Figure 14 shows

6At least 40 km/h is needed to trigger collision warnings.
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Figure 14: ibeo LUX 3 live experiment. The objects change
direction (the lines), as instructed by the attacker.

two sequential frames of the LiDAR, and shows how the
position of the objects reverses immediately. While this is
not problematic for the tracking software, it can potentially
confuse the decision system of an AV. Furthermore, there
is a limit on the number of objects that can be tracked by
the ibeo LUX 3. By introducing noise or more sophisticated
objects, a denial-of-service attack can be mounted on the
LiDAR, by introducing a large number of noise or spoofed
objects. The ibeo LUX 3 would then track fake objects while
real objects wouldn’t be detected anymore.

Based on this object detection, the automation system will
adapt its short-term planning (e.g. preparation of maneuvre
to avoid obstacle) or mid-term planning (e.g. modification
of the route to react to road block ahead). Therefore, the
attacker does not necessarily need to inject fake objects close
to the target vehicle to impact its driving behavior. How-
ever, checking how automation system reacts to malicious
sensor data would require access to the complete vehicle au-
tomation system, which is part of our future work. One
should note that the current work used raw data level and
that typical sensor system output to the OBU at an object
level and performs some sort of data sanitisation.

8. CONCLUSIONS AND FUTURE WORK
Automated vehicles are becoming a reality and car manu-
facturers foresee deployment in a near future. Autonomous
automated vehicles unconditionally rely on their on-board
sensors to detect surroundings objects and understand their
environment. Valid and accurate sensor data are required to
make appropriate driving decisions such as emergency brake,
changing trajectory or rerouting. In this paper we demon-
strated remote attacks on two perception systems: camera
(MobilEye C2-270) and LiDAR (ibeo LUX 3). By perform-
ing attacks with commodity hardware, we proved their feasi-
bility and effectiveness. Specifically, we shown blinding and
confusing auto controls attacks on the camera, and relay-
ing and spoofing attacks on the LiDAR. For the MobilEye
C2-270, a simple laser pointer was sufficient to blind the
camera and prevent detection of vehicle ahead. A cheap
transceiver was able to inject fake objects that are success-
fully detected and tracked by the ibeo LUX 3. These attacks
prove that additional techniques are needed to make the sen-
sor more robust to ensure appropriate sensor data quality.
Thus, we proposed countermeasures to mitigate these at-
tacks. As the automotive domain is strongly cost-driven,
the proposed countermeasures are mostly applicable in soft-
ware. Finally, we discussed limitations of our experiments
and potential impact on the application layer.

Our future work are fourfold. First we will reproduce the
attacks outdoor in moving vehicles. Secondly, we will get ac-
cess to the full automation system to investigate the impact
of attacks on the driving decisions. We will extend the ex-
periments by attacking multiple sensors at the same time to
stress even more the system and check its reaction. Thirdly,
we will get access to other models of sensors to generalize
the applicability of our attacks. Finally, we will implement
the proposed countermeasures to validate them.
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